Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Clin Genet ; 14: 241-254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953598

RESUMEN

Multiple myeloma (MM) is a heterogeneous disease featured by clonal plasma cell proliferation and genomic instability. The advent of next-generation sequencing allowed unraveling the complex genomic landscape of the disease. Several recurrent genomic aberrations including immunoglobulin genes translocations, copy number abnormalities, complex chromosomal events, transcriptomic and epigenomic deregulation, and mutations define various molecular subgroups with distinct outcomes. In this review, we describe the recurrent genomic events identified in MM impacting patients' outcome and survival. These genomic aberrations constitute new markers that could be incorporated into a prognostication model to eventually guide therapy at every stage of the disease.

2.
Cancers (Basel) ; 13(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808143

RESUMEN

Derivative chromosome der(1;16), isochromosome 1q, and deleted 16q-producing arm-level 1q-gain and/or 16q-loss-are recurrent cytogenetic abnormalities in breast cancer, but their exact role in determining the malignant phenotype is still largely unknown. We exploited The Cancer Genome Atlas (TCGA) data to generate and analyze groups of breast invasive carcinomas, called 1,16-chromogroups, that are characterized by a pattern of arm-level somatic copy number aberrations congruent with known cytogenetic aberrations of chromosome 1 and 16. Substantial differences were found among 1,16-chromogroups in terms of other chromosomal aberrations, aneuploidy scores, transcriptomic data, single-point mutations, histotypes, and molecular subtypes. Breast cancers with a co-occurrence of 1q-gain and 16q-loss can be distinguished in a "low aneuploidy score" group, congruent to der(1;16), and a "high aneuploidy score" group, congruent to the co-occurrence of isochromosome 1q and deleted 16q. Another three groups are formed by cancers showing separately 1q-gain or 16q-loss or no aberrations of 1q and 16q. Transcriptome comparisons among the 1,16-chromogroups, integrated with functional pathway analysis, suggested the cooperation of overexpressed 1q genes and underexpressed 16q genes in the genesis of both ductal and lobular carcinomas, thus highlighting the putative role of genes encoding gamma-secretase subunits (APH1A, PSEN2, and NCSTN) and Wnt enhanceosome components (BCL9 and PYGO2) in 1q, and the glycoprotein E-cadherin (CDH1), the E3 ubiquitin-protein ligase WWP2, the deubiquitinating enzyme CYLD, and the transcription factor CBFB in 16q. The analysis of 1,16-chromogroups is a strategy with far-reaching implications for the selection of cancer cell models and novel experimental therapies.

3.
Int J Mol Sci ; 20(18)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546890

RESUMEN

Broad Copy Number Gains (BCNGs) are copy-number increases of chromosomes or large segments of chromosomal arms. Publicly-available single-nucleotide polymorphism (SNP) array and RNA-Seq data of colon adenocarcinoma (COAD) samples from The Cancer Genome Atlas (TCGA) consortium allowed us to design better control groups in order to identify changes in expression due to highly recurrent BCNGs (in chromosomes 20, 8, 7, 13). We identified: (1) Overexpressed Transcripts (OverT), transcripts whose expression increases in "COAD groups bearing a specific BCNG" in comparison to "control COAD groups" not bearing it, and (2) up-regulated/down-regulated transcripts, transcripts whose expression increases/decreases in COAD groups in comparison to normal colon tissue. An analysis of gene expression reveals a correlation between the density of up-regulated genes per selected chromosome and the recurrence rate of their BCNGs. We report an enrichment of gained enhancer activity and of cancer fitness genes among OverT genes. These results support the hypothesis that the chromosomal density of overexpressed cancer fitness genes might play a significant role in the selection of gained chromosomes during cancer evolution. Analysis of functional pathways associated with OverT suggest that some multi-subunit protein complexes (eIF2, eIF3, CSTF and CPSF) are candidate targets for silencing transcriptional therapy.


Asunto(s)
Adenocarcinoma , Cromosomas Humanos/metabolismo , Neoplasias del Colon , Elementos de Facilitación Genéticos , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Modelos Biológicos , Proteínas de Neoplasias , Regulación hacia Arriba , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Cromosomas Humanos/genética , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética
4.
Genet Med ; 21(9): 1903-1916, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31138931

RESUMEN

The detection of acquired copy-number abnormalities (CNAs) and copy-neutral loss of heterozygosity (CN-LOH) in neoplastic disorders by chromosomal microarray analysis (CMA) has significantly increased over the past few years with respect to both the number of laboratories utilizing this technology and the broader number of tumor types being assayed. This highlights the importance of standardizing the interpretation and reporting of acquired variants among laboratories. To address this need, a clinical laboratory-focused workgroup was established to draft recommendations for the interpretation and reporting of acquired CNAs and CN-LOH in neoplastic disorders. This project is a collaboration between the American College of Medical Genetics and Genomics (ACMG) and the Cancer Genomics Consortium (CGC). The recommendations put forth by the workgroup are based on literature review, empirical data, and expert consensus of the workgroup members. A four-tier evidence-based categorization system for acquired CNAs and CN-LOH was developed, which is based on the level of available evidence regarding their diagnostic, prognostic, and therapeutic relevance: tier 1, variants with strong clinical significance; tier 2, variants with some clinical significance; tier 3, clonal variants with no documented neoplastic disease association; and tier 4, benign or likely benign variants. These recommendations also provide a list of standardized definitions of terms used in the reporting of CMA findings, as well as a framework for the clinical reporting of acquired CNAs and CN-LOH, and recommendations for how to deal with suspected clinically significant germline variants.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Laboratorios/normas , Pérdida de Heterocigocidad/genética , Neoplasias/genética , Genética Médica , Genoma Humano/genética , Genómica , Humanos , Análisis por Micromatrices , Mutación/genética , Neoplasias/diagnóstico
5.
Clin Genet ; 96(2): 163-168, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31066036

RESUMEN

Multiple myeloma (MM) is an incurable hematological malignancy that relies on cytogenetic determination of copy number abnormalities (CNAs) for prognosis and management. Low-depth whole genome sequencing (LD-WGS) is a cost-effective alternative to targeted genomics for CNA detection, but its value has yet to be explored in MM. DNA from CD138+ cells from MM patients were sequenced using an Illumina NextSeq at <1x depth (ultralow-depth). Subsampling analysis and window size adjustment were performed for determining sensitivity limits and results compared to fluorescent in-Situ hybridization (FISH). CNA calls made down to 5 million (M) reads were comparable to those at 20 M reads at a window size of 100 kb had a sensitivity and specificity of 93%, 92% and an area under the curve of 0.94. All CNAs detected by FISH on the MM samples were also detected by LD-WGS; the latter detected a further 36 focal CNAs not detected by FISH. Cost per sample of LD-WGS was significantly lower for our organization than FISH testing. LD-WGS for MM is significantly more sensitive than targeted technologies such as FISH in CNA detection and resolution, provides a more cost-effective option for clinical purposes and potential for exploring prognostically relevant and drug discovery targets.


Asunto(s)
Variaciones en el Número de Copia de ADN , Mieloma Múltiple/genética , Mapeo Cromosómico , Hibridación Genómica Comparativa , Biología Computacional/métodos , Humanos , Hibridación Fluorescente in Situ , Secuenciación Completa del Genoma
6.
Cancer Genet ; 228-229: 218-235, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30344013

RESUMEN

Structural genomic abnormalities, including balanced chromosomal rearrangements, copy number gains and losses and copy-neutral loss-of-heterozygosity (CN-LOH) represent an important category of diagnostic, prognostic and therapeutic markers in acute myeloid leukemia (AML). Genome-wide evaluation for copy number abnormalities (CNAs) is at present performed by karyotype analysis which has low resolution and is unobtainable in a subset of cases. Furthermore, examination for possible CN-LOH in leukemia cells is at present not routinely performed in the clinical setting. Chromosomal microarray (CMA) analysis is a widely available assay for CNAs and CN-LOH in diagnostic laboratories, but there are currently no guidelines how to best incorporate this technology into clinical testing algorithms for neoplastic diseases including AML. The Cancer Genomics Consortium Working Group for Myeloid Neoplasms performed an extensive review of peer-reviewed publications focused on CMA analysis in AML. Here we summarize evidence regarding clinical utility of CMA analysis in AML extracted from published data, and provide recommendations for optimal utilization of CMA testing in the diagnostic workup. In addition, we provide a list of CNAs and CN-LOH regions which have documented clinical significance in diagnosis, prognosis and treatment decisions in AML.


Asunto(s)
Variaciones en el Número de Copia de ADN , Medicina Basada en la Evidencia , Leucemia Mieloide Aguda/genética , Pérdida de Heterocigocidad , Humanos
7.
Med Oncol ; 34(5): 92, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28401483

RESUMEN

Genes related to key cellular pathways are frequently altered in B cell ALL and are associated with poor survival especially in high-risk (HR) subgroups. We examined gene copy number abnormalities (CNA) in 101 Indian HR B cell ALL patients and their correlation with clinicopathological features by multiplex ligation-dependent probe amplification. Overall, CNA were detected in 59 (59%) cases, with 26, 10 and 23% of cases harboring 1, 2 or +3 CNA. CNA were more prevalent in BCR-ABL1 (60%), pediatric (64%) and high WCC (WBC count) (63%) patients. Frequent genes deletions included CDNK2A/B (26%), IKZF1 (25%), PAX5 (14%), JAK2 (7%), BTG1 (6%), RB1 (5%), EBF1 (4%), ETV6 (4%), while PAR1 region genes were predominantly duplicated (20%). EBF1 deletions selectively associated with adults, IKZF1 deletions occurred frequently in high WCC and BCR-ABL1 cases, while PAR1 region gains significantly associated with MLL-AF4 cases. IKZF1 haploinsufficiency group was predominant, especially in adults (65%), high WCC (60%) patients and BCR-ABL1-negative (78%) patients. Most cases harbored multiple concurrent CNA, with IKZF1 concomitantly occurring with CDNK2A/B, PAX5 and BTG1, while JAK2 occurred with CDNK2A/B and PAX5. Mutually exclusive CNA included ETV6 and IKZF1/RB1, and EBF1 and JAK2. Our results corroborate with global reports, aggregating molecular markers in Indian HR B-ALL cases. Integration of CNA data from rapid methods like MLPA, onto background of existing gold-standard methods detecting significant chromosomal abnormalities, provides a comprehensive genetic profile in B-ALL.


Asunto(s)
Dosificación de Gen , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Adolescente , Adulto , Factores de Edad , Anciano , Niño , Preescolar , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Factor de Transcripción Ikaros/genética , India , Lactante , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Adulto Joven
8.
Cancer Genet ; 210: 9-21, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28212810

RESUMEN

Chromosomal instability (CIN) is classically defined as an increase in the rate at which numerical or structural chromosomal aberrations are acquired in a cancer cell. The number of somatic copy number abnormalities (CNAs) revealed by high resolution genomic array can be considered as a surrogate marker for CIN, but several points, related to sample processing and data analysis, need to be standardized. In this work we analyzed 51 CRC samples and matched normal mucosae by whole genome SNP arrays and compared different bioinformatics tools in order to identify broad (>25% of a chromosomal arm) and focal somatic copy number abnormalities (BCNAs and FCNAs respectively). In 15 tumors, two samples, separated by at least 1 cm, were taken from the same tumor mass (double-sampling pairs) in order to evaluate differences in detection of chromosomal abnormalities between distant regions of the same tumor and their influence on CIN quantitative and qualitative analysis. Our data show a high degree of correlation of the quantitative CIN index (somatic BCNA number) between distant tumor regions. On the contrary, a lower correlation is observed in terms of chromosomal distribution of BCNAs, as summarized by a simplified cytogenetic table. Quantitative or qualitative analysis of FCNAs, including homozygous deletions and high level amplifications, did not add further information on the CIN status. The use of the index "somatic BCNA number" can be proposed for a robust classification of tumors as CIN positive or negative even in the presence of a significant tumor regional heterogeneity.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias del Colon/genética , Anciano , Femenino , Humanos , Masculino
9.
Leuk Res ; 56: 44-51, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28193567

RESUMEN

B lymphoblastic leukemia (B-ALL) in adults has a higher risk of relapse and lower long-term survival than pediatric B-ALL, but data regarding genetic prognostic biomarkers are much more limited for adult patients. We identified 70 adult B-ALL patients from three institutions and performed genome-wide analysis via single nucleotide polymorphism (SNP) arrays on DNA isolated from their initial diagnostic sample and, when available, relapse bone marrow specimens to identify recurring copy number alterations (CNA). As B-cell developmental genes play a crucial role in this leukemia, we assessed such for recurrent deletions in diagnostic and relapse samples. We confirmed previous findings that the most prevalent deletions of these genes occur in CDKN2A, IKZF1, and PAX5, with several others at lower frequencies. Of the 16 samples having paired diagnostic and relapse samples, 5 showed new deletions in these recurrent B-cell related genes and 8 showed abolishment. Deletion of EBF1 heralded a significant negative prognostic impact on relapse free survival in univariate and multivariate analyses. The combination of both a CDKN2A/B deletion and an IKZF1 alteration (26% of cases) also showed a trend toward predicting worse overall survival compared to having only one or neither of these deletions. These findings add to the understanding of genomic influences on this comparably understudied disease cohort that upon further validation may help identify patients who would benefit from upfront treatment intensification.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Variaciones en el Número de Copia de ADN , Femenino , Marcadores Genéticos/genética , Genómica/métodos , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Pronóstico , Adulto Joven
10.
Ann Oncol ; 27(3): 532-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26681675

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) of tumour samples is a critical component of personalised cancer treatment, but it requires high-quality DNA samples. Routine neutral-buffered formalin (NBF) fixation has detrimental effects on nucleic acids, causing low yields, as well as fragmentation and DNA base changes, leading to significant artefacts. PATIENTS AND METHODS: We have carried out a detailed comparison of DNA quality from matched samples isolated from high-grade serous ovarian cancers from 16 patients fixed in methanol and NBF. These experiments use tumour fragments and mock biopsies to simulate routine practice, ensuring that results are applicable to standard clinical biopsies. RESULTS: Using matched snap-frozen tissue as gold standard comparator, we show that methanol-based fixation has significant benefits over NBF, with greater DNA yield, longer fragment size and more accurate copy-number calling using shallow whole-genome sequencing (WGS). These data also provide a new approach to understand and quantify artefactual effects of fixation using non-negative matrix factorisation to analyse mutational spectra from targeted and WGS data. CONCLUSION: We strongly recommend the adoption of methanol fixation for sample collection strategies in new clinical trials. This approach is immediately available, is logistically simple and can offer cheaper and more reliable mutation calling than traditional NBF fixation.


Asunto(s)
ADN/efectos de los fármacos , Formaldehído/química , Metanol/química , Neoplasias/diagnóstico , Fijación del Tejido/métodos , Secuencia de Bases , ADN/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Adhesión en Parafina , Análisis de Secuencia de ADN
13.
Eur J Med Genet ; 56(9): 515-20, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23886712

RESUMEN

The 22q11.2 Deletion Syndrome (22q11.2DS) is the most common microdeletion syndrome in humans, with a highly variable phenotype. This chromosomal region contains low copy repeat (LCR) sequences that mediate non-allelic homologous recombination which predispose to copy number abnormalities at this locus. This article describes three patients investigated for suspicion of 22q11.2DS presenting atypical copy number abnormalities overlapping or not with the common ∼3 Mb deletion. They were investigated by G-banding karyotype, Multiplex-ligation dependent probe amplification (MLPA) and array Genomic Hibridization (aGH). Clinical and molecular data were compared with literature, in order to contribute to genotype-phenotype correlation. Atypical chromosomal abnormalities were detected: 3.6 Mb deletion at 22q11.21-q11.23 between LCRs B-F in patient 1 and approximately 1.5 Mb deletion at 22q11.21-q11.22 between LCRs D-E in patients 2 and 3. The breakpoints detected in patient 1 have not been previously described. These findings exemplify the complexity and genetic heterogeneity observed in 22q11.2 region and corroborates the idea that genetic modifiers contribute to the phenotypic variability observed in proximal and distal 22q11.2 deletion syndromes.


Asunto(s)
Síndrome de Deleción 22q11/genética , Deleción Cromosómica , Síndrome de Deleción 22q11/diagnóstico , Niño , Preescolar , Puntos de Rotura del Cromosoma , Femenino , Heterogeneidad Genética , Humanos , Masculino , Fenotipo , Duplicaciones Segmentarias en el Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA