Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
World J Diabetes ; 15(7): 1562-1588, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39099827

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease. The Astragalus-Coptis drug pair is frequently employed in the management of DKD. However, the precise molecular mechanism underlying its therapeutic effect remains elusive. AIM: To investigate the synergistic effects of multiple active ingredients in the Astragalus-Coptis drug pair on DKD through multiple targets and pathways. METHODS: The ingredients of the Astragalus-Coptis drug pair were collected and screened using the TCMSP database and the SwissADME platform. The targets were predicted using the SwissTargetPrediction database, while the DKD differential gene expression analysis was obtained from the Gene Expression Omnibus database. DKD targets were acquired from the GeneCards, Online Mendelian Inheritance in Man database, and DisGeNET databases, with common targets identified through the Venny platform. The protein-protein interaction network and the "disease-active ingredient-target" network of the common targets were constructed utilizing the STRING database and Cytoscape software, followed by the analysis of the interaction relationships and further screening of key targets and core active ingredients. Gene Ontology (GO) function and Kyoto Ency-clopedia of Genes and Genomes (KEGG) pathway enrichments were performed using the DAVID database. The tissue and organ distributions of key targets were evaluated. PyMOL and AutoDock software validate the molecular docking between the core ingredients and key targets. Finally, molecular dynamics (MD) simulations were conducted to simulate the optimal complex formed by interactions between core ingredients and key target proteins. RESULTS: A total of 27 active ingredients and 512 potential targets of the Astragalus-Coptis drug pair were identified. There were 273 common targets between DKD and the Astragalus-Coptis drug pair. Through protein-protein interaction network topology analysis, we identified 9 core active ingredients and 10 key targets. GO and KEGG pathway enrichment analyses revealed that Astragalus-Coptis drug pair treatment for DKD involves various biological processes, including protein phosphorylation, negative regulation of apoptosis, inflammatory response, and endoplasmic reticulum unfolded protein response. These pathways are mainly associated with the advanced glycation end products (AGE)-receptor for AGE products signaling pathway in diabetic complications, as well as the Lipid and atherosclerosis. Molecular docking and MD simulations demonstrated high affinity and stability between the core active ingredients and key targets. Notably, the quercetin-AKT serine/threonine kinase 1 (AKT1) and quercetin-tumor necrosis factor (TNF) protein complexes exhibited exceptional stability. CONCLUSION: This study demonstrated that DKD treatment with the Astragalus-Coptis drug pair involves multiple ingredients, targets, and signaling pathways. We propose a novel approach for investigating the molecular mechanism underlying the therapeutic effects of the Astragalus-Coptis drug pair on DKD. Furthermore, we suggest that quercetin is the most potent active ingredient and specifically targets AKT1 and TNF, providing a theoretical foundation for further exploration of pharmacologically active ingredients and elucidating their molecular mechanisms in DKD treatment.

2.
Curr Top Med Chem ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39136504

RESUMEN

Coptis chinensis Franch. (Ranunculaceae, Coptis), a traditional Chinese medicine (TCM) with thousands of years of clinical use history, also a natural medicine available in many countries, has wide pharmacological mechanisms and significant bioactivity according to its traditional efficacy combined with modern scientific research. The quality marker (Q-marker) of C. chinensis Franch. is predicted in this paper based on the chemical composition and pharmacological effects of the plant, as well as the current system pharmacology, plant relatedness, biosynthetic pathways and quantitative analysis of multi-components (QAMS). Natural medicine has the advantage of being multi-component, multi-pathway and multi-target. However, there are few reports on safety evaluation. This review predicts the Q-marker of C. chinensis, and the safety and efficacy of C. chinensis is provided. Studies from 1975 to 2023 were reviewed from PubMed, Elsevier, ScienceDirect, Web of Science, SpringerLink, and Google Scholar. Alkaloids and organic acids are the two main component categories of Q-Markers. The specific alkaloids identified through predictive results include berberine, coptisine, palmatine, epiberberine, jatrorrhizine, columbamine, and berberrubine. Quinic acid and malic acid, due to their influence on the content of alkaloids and their ability to aid in identifying the active components of C. chinensis, are also considered Q-markers. The research strategy of "exploring chemical components, exploring pharmacological activities, constructing pharmacological mechanism network and locating biosynthetic pathways" was used to accurately screen the quality markers of C. chinensis in this review and summarise the quality evaluation methods and criteria. In addition, we updated the biosynthetic pathway of C. chinensis and refined the specific synthetic pathways of jatrorrhizine (quality markers) and epiberberine (quality markers). Finally, we summarised the quality evaluation methods of C. chinensis, which provide an important reference for resource evaluation and provide a key reference for the discovery of new functional chemical entities for natural medicines.

3.
J Ethnopharmacol ; 335: 118680, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39117021

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches certified that COP is a prospective remedy for colitis, but the mechanism of colitis and the therapeutical target of COP are deficiently elucidated. AIM OF THIS STUDY: In this follow-up study, we adopted dextran sulfate sodium (DSS)-elicited UC model to further elucidate the possible mechanism of COP on UC in mice. MATERIALS AND METHODS: COP and the positive drug sulfasalazine (SASP) were administered by oral gavage in DSS-induced colitis mouse model. Oxidative stress, inflammatory cytokines, intestinal barrier permeability, protein expression of the TXNIP/NLRP3 inflammasome pathway and intestinal microbiome structure were assessed. RESULTS: Among this investigation, our team discovered that COP could mitigate DSS-elicited UC in murines, with prominent amelioration in weight loss, disease activity index, intestinal permeability (serum diamine oxidase and D-lactate), contracted colonal length and histologic alterations. Furthermore, COP greatly lowered the generation of pro-inflammatory factors, malondialdehyde (MDA) activity and reactive oxygen species (ROS) level, while increased superoxide dismutase (SOD) activity in colonal tissues. Additionally, COP downmodulated the proteic expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, IL-1ß and IL-18. Enteric microbiome sequencing displayed that DSS and COP tremendously influenced the constitution and diversity of enteric microbes in DSS-elicited UC murines. Besides, COP elevated the abundance of probiotic bacteria Bacteroidota, Akkermansia_muciniphila and Bacteroides_acidifaciens, lowered the proportions of potential pathogenic bacteria, such as Lachnospiraceae, Acetatifactor_muris, Clostridium_XlVa, Alistipes and Oscillibacter, and reduced the ratio of Bacillota/Bacteroidota, which vastly helped to reverse the enteric microbiome to a balanceable condition. Alterations in these bacteria were strongly correlated with the colitis relative index. CONCLUSION: The mechanism of COP against UC is connected with the suppression of TXNIP/NLRP3 inflammasome signalling pathway and the adjustment of the enteric microbiome profiles. The proofs offer new understandings upon the anti-UC function of COP, which might be a prospective candidate against UC.


Asunto(s)
Berberina , Proteínas Portadoras , Colitis Ulcerosa , Sulfato de Dextran , Microbioma Gastrointestinal , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Berberina/farmacología , Berberina/análogos & derivados , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Proteínas Portadoras/metabolismo , Ratones , Masculino , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Antiinflamatorios/farmacología , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Tiorredoxinas/metabolismo , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo
4.
Plant Dis ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907519

RESUMEN

Coptis (Coptis chinensis) belongs to the Ranunculaceae family, the rhizomes used in traditional Chinese medicine. Since 2021, an uncommon stem and leaf wilt disease, with an average disease incidence of 70%~90%, has been observed in Guangdong and Guangxi provinces. The early wilt symptoms were observed on older leaves and stems, and the whole seedling wilted and died. The rhizome of the diseased seedlings changed in color, became necrotic, and rotted. Symptomatic roots and stems were surface-sterilized with 70% ethanol for 30 s, followed by 0.2% NaClO for 2-3 min, rinsed in sterile water three times, and then placed on potato dextrose agar (PDA) at 25℃for 14 days. Fungal growth was observed, and six isolates with similar morphology were obtained. The 14-day-old colonies on PDA were buff with few aerial hyphae and slimy surfaces. Aerial hyphae were sparse with simple or branched conidiophores. Conidia were hyaline, smooth, ovoid, septate or aseptate, and 5.77 to 9.53 × 2.15 to 3.32 µm (n = 50). Three of the six isolates were subjected to further analysis. The genomic DNA of three isolates (CCF1-1, CCF1-2, CCF1-3) was extracted using Axygen MAG-FRAG- I-50 (Axygen Bio-Tek) for molecular identification. Partial sequences of the internal transcribed spacer of rDNA (ITS) and large subunit rDNA (LSU) were amplified using the primers ITS1/4 and LR5F/LROR, respectively (Vilgalys and Hester 1990). Their sequences were aligned by MEGA X (Kumar et al., 2018), and the sequences of each region showed 100% sequence similarity among our isolates. A BLAST search of ITS and LSU sequences (accession nos. ON377369, ON428244) showed that both regions had the highest nucleotide similarities (99.43 to 99.89%) to the Plectosphaerella cucumerina strains. Based on morphological and molecular analyses, the isolates were identified as P. cucumerina (Palm et al. 1995). The pathogenicity of our isolates CCF1-1, CCF1-2, CCF1-3 was tested on ten 2-month-old healthy seedlings of coptis, respectively. For the seedlings, 30 ml of fungal conidial suspension (1×106 conidia/ml) or sterile water, as control, were poured into their root area. Conidia suspension were prepared from 14-day-old cultures on PDA by eluting with sterilized water. The seedlings were incubated at 25°C and 75% relative humidity under a 12-h/12-h light/dark cycle. The test was repeated three times. After 20 days, only seedlings inoculated with P. cucumerina exhibited symptoms similar to those diseased seedlings in the field. The control seedling had no symptoms. The morphologically similar fungus was re-isolated from the tested seedlings, thus fulfilling Koch's postulates. Based on molecular, morphological, and pathogenic properties, P. cucumerina is the causal fungal pathogen of coptis wilt disease. Previously, P. cucumerina has been related to wilt disease in strawberry and Chinese cabbage (Yang et al. 2023; Gao et al. 2022), but to our knowledge, this is the first report of P. cucumerina causing wilt disease on coptis in China. Coptis wilt disease tends to occur in a warm and rainy environment, and strengthening the detection and quarantine of seedlings is the key to preventing the occurrence and spread of the disease.

5.
Comput Biol Med ; 178: 108804, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941899

RESUMEN

Chronic atrophic gastritis (CAG), characterized by inflammation and erosion of the gastric lining, is a prevalent digestive disorder and considered a precursor to gastric cancer (GC). Coptis chinensis France (CCF) is renowned for its potent heat-clearing, detoxification, and anti-inflammatory properties. Zuojin Pill (ZJP), a classic Chinese medicine primarily composed of CCF, has demonstrated effectiveness in CAG treatment. This study aims to elucidate the potential mechanism of CCF treatment for CAG through a multifaceted approach encompassing network pharmacology, molecular docking, molecular dynamics simulation and experimental verification. The study identified three major active compounds of CCF and elucidated key pathways, such as TNF signaling, PI3K-Akt signaling and p53 signaling. Molecular docking revealed interactions between these active compounds and pivotal targets like PTGS2, TNF, MTOR, and TP53. Additionally, molecular dynamics simulation validated berberine as the primary active compound of CCF, which was further confirmed through experimental verification. This study not only identified berberine as the primary active compound of CCF but also provided valuable insights into the molecular mechanisms underlying CCF's efficacy in treating CAG. Furthermore, it offers a reference for refining therapeutic strategies for CAG management.


Asunto(s)
Coptis , Medicamentos Herbarios Chinos , Gastritis Atrófica , Simulación de Dinámica Molecular , Farmacología en Red , Humanos , Coptis/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Gastritis Atrófica/tratamiento farmacológico , Gastritis Atrófica/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Berberina/química , Berberina/uso terapéutico , Berberina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
6.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792165

RESUMEN

The objective of this study was to identify multiple alkaloids in Coptis chinensis that demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay, surface plasmon resonance (SPR), and a molecular dynamics simulation technique was employed. The results showed that nine alkaloids in Coptis chinensis directly inhibited DPP-4, with IC50 values of 3.44-53.73 µM. SPR-based binding studies revealed that these alkaloids display rapid binding and dissociation characteristics when interacting with DPP-4, with KD values ranging from 8.11 to 29.97 µM. A molecular dynamics analysis revealed that equilibrium was rapidly reached by nine DPP-4-ligand systems with minimal fluctuations, while binding free energy calculations showed that the ∆Gbind values for the nine test compounds ranged from -31.84 to -16.06 kcal/mol. The most important forces for the binding of these alkaloids with DPP-4 are electrostatic interactions and van der Waals forces. Various important amino acid residues, such as Arg125, His126, Phe357, Arg358, and Tyr547, were involved in the inhibition of DPP-4 by the compounds, revealing a mechanistic basis for the further optimization of these alkaloids as DPP-4 inhibitors. This study confirmed nine alkaloids as direct inhibitors of DPP-4 and characterized their binding features, thereby providing a basis for further research and development on novel DPP-4 inhibitors.


Asunto(s)
Alcaloides , Coptis , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Alcaloides/química , Alcaloides/farmacología , Sitios de Unión , Coptis/química , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Descubrimiento de Drogas/métodos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Resonancia por Plasmón de Superficie
7.
Mikrochim Acta ; 191(5): 286, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652378

RESUMEN

A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable "hot spots" is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.


Asunto(s)
Nanopartículas del Metal , Plantas Comestibles , Plantas Medicinales , Plata , Espectrometría Raman , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Plantas Medicinales/química , Plata/química , Plantas Comestibles/química , Límite de Detección , Fitoquímicos/análisis , Fitoquímicos/química , Reproducibilidad de los Resultados , Alcaloides/análisis
8.
Biol Pharm Bull ; 47(4): 827-839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38599826

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.


Asunto(s)
Berberina , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Berberina/análogos & derivados , Estudios de Casos y Controles , Coptis chinensis , Neuronas Dopaminérgicas/metabolismo , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Rizoma
9.
J Agric Food Chem ; 72(18): 10282-10294, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657235

RESUMEN

This study explores the antipathogenic properties of volatile organic compounds (VOCs) produced by Bacillus velezensis LT1, isolated from the rhizosphere soil of Coptis chinensis. The impact of these VOCs on the mycelial growth of Sclerotium rolfsii LC1, the causative agent of southern blight in C. chinensis, was evaluated using a double Petri-dish assay. The biocontrol efficacy of these VOCs was further assessed through leaf inoculation and pot experiments. Antifungal VOCs were collected using headspace solid-phase microextraction (SPME), and their components were identified via gas chromatography-mass spectrometry (GC-MS). The results revealed that the VOCs significantly inhibited the mycelial growth and sclerotia germination of S. rolfsii LC1 and disrupted the morphological integrity of fungal mycelia. Under the influence of these VOCs, genes associated with chitin synthesis were upregulated, while those related to cell wall degrading enzymes were downregulated. Notably, 2-dodecanone and 2-undecanone exhibited inhibition rates of 81.67% and 80.08%, respectively. This research provides a novel approach for the prevention and management of southern blight in C. chinensis, highlighting the potential of microbial VOCs in biocontrol strategies.


Asunto(s)
Bacillus , Basidiomycota , Coptis , Enfermedades de las Plantas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Bacillus/química , Bacillus/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Basidiomycota/química , Basidiomycota/metabolismo , Coptis/química , Coptis/microbiología , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Cromatografía de Gases y Espectrometría de Masas , Micelio/química , Micelio/crecimiento & desarrollo , Micelio/efectos de los fármacos
10.
Front Biosci (Landmark Ed) ; 29(3): 93, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38538280

RESUMEN

BACKGROUND: Polygonum hydropiper L (PH) was widely used to treat dysentery, gastroenteritis, diarrhea and other diseases. Coptis chinensis (CC) had the effects of clearing dampness-heat, purging fire, and detoxifying. Study confirmed that flavonoids in PH and alkaloids in CC alleviated inflammation to inhibit the development of intestinal inflammation. However, how PH-CC affects UC was unclear. Therefore, the aim of this study is to analyze the mechanism of PH-CC on ulcerative colitis (UC) through network pharmacology and in vivo experiments. METHODS: The active ingredients and targets of PH-CC and targets of UC were screened based on related databases. The core targets of PH-CC on UC was predicted by protein-protein interaction network (PPI), and then the Gene Ontology-biological processes (GO-BP) function enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The binding activity between pyroptosis proteins, core targets and effective ingredients were verified based on molecular docking technology. Finally, combined with the results of network pharmacology and literature research, the mechanism of PH-CC against UC was verified by in vivo experiments. RESULTS: There were 23 active components and 191 potential targets in PH-CC, 5275 targets in UC, and 141 co-targets. GO-BP functional analysis of 141 co-targets showed that the first 20 biological processes were closely related to inflammation and lipopolysaccharide (LPS) stimulation. Furthermore, core targets had good binding activity with the corresponding compounds. Animal experiment indicated that PH-CC effectively prevented weight loss in UC mice, reduced the disease activity index (DAI) score, maintained colon length, suppressed myeloperoxidase (MPO) activity, inhibited pyroptosis protein expression, and downregulated the levels of IL-18 and IL-1ß to alleviate intestinal inflammation. CONCLUSIONS: The results of network pharmacology and animal experiments showed that PH-CC suppressed the inflammatory response, restored colon morphology, and inhibited pyroptosis in UC mice. Thus, PH-CC may improve UC by regulating the NOD-like receptor protein domain 3 (NLRP3)/Caspase-1 signaling pathway.


Asunto(s)
Colitis Ulcerosa , Polygonum , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Farmacología en Red , Coptis chinensis , Simulación del Acoplamiento Molecular , Inflamación
11.
Front Pharmacol ; 15: 1372527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523644

RESUMEN

Introduction: Drug dosages and combinations are the main factors that affect the efficacy of pleiotropic traditional Chinese medicine (TCM). Coptis chinensis Franch. (CF) is a representative TCM with multiple effects and is often combined with Tetradium ruticarpum (A. Jussieu) T. G. Hartley (TR) to treat cholestasis. The present study assessed the influence of CF dose and its combination with TR on the efficacy of CF in cholestasis treatment, including their effects on fecal metabolism and fecal microorganisms. Methods: Rats with α-naphthylisothiocyanate (ANIT, 50 mg/kg)-induced cholestasis were administered low (0.3 g/kg) and high (0.6 g/kg) doses of CF, as well as CF combined with TR at doses of 0.6 g/kg and 0.9 g/kg, respectively. The anti-cholestatic effects of these treatments were assessed by determining their anti-inflammatory, hypolipidemic, and anti-oxidative stress properties. Additionally, fecal metabolomics and fecal microorganisms were analyzed. Results: Low dose CF had a more potent hypolipidemic effect than high dose CF, whereas high dose CF had more potent anti-inflammatory and anti-oxidative stress effects. Combination with TR enhanced the hypolipidemic effect, but antagonized the anti-inflammatory effect, of CF. Analyses of fecal metabolomics and fecal microorganisms showed differences in the regulation of lipid- and amino acid metabolism-related pathways, including pathways of linoleic acid, tyrosine, and arachidonic acid metabolism, and amino acid biosynthesis between different doses of CF as well as between different doses of CF in combination with TR. These differences may contribute to differences in the anti-cholestatic effects of these preparations. Conclusion: CF dose influences its anti-cholestatic efficacy. The combination with TR had synergistic or antagonistic effects on the properties of CF, perhaps by altering fecal metabolism and fecal microbial homeostasis.

12.
Front Microbiol ; 15: 1337655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500587

RESUMEN

Introduction: Southern blight, caused by Sclerotium rolfsii, poses a serious threat to the cultivation of Coptis chinensis, a plant with significant medicinal value. The overreliance on fungicides for controlling this pathogen has led to environmental concerns and resistance issues. There is an urgent need for alternative, sustainable disease management strategies. Methods: In this study, Bacillus velezensis LT1 was isolated from the rhizosphere soil of diseased C. chinensis plants. Its biocontrol efficacy against S. rolfsii LC1 was evaluated through a confrontation assay. The antimicrobial lipopeptides in the fermentation liquid of B. velezensis LT1 were identified using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS). The effects of B. velezensis LT1 on the mycelial morphology of S. rolfsii LC1 were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: The confrontation assay indicated that B. velezensis LT1 significantly inhibited the growth of S. rolfsii LC1, with an inhibition efficiency of 78.41%. MALDI-TOF-MS analysis detected the presence of bacillomycin, surfactin, iturin, and fengycin in the fermentation liquid, all known for their antifungal properties. SEM and TEM observations revealed that the mycelial and cellular structures of S. rolfsii LC1 were markedly distorted when exposed to B. velezensis LT1. Discussion: The findings demonstrate that B. velezensis LT1 has considerable potential as a biocontrol agent against S. rolfsii LC1. The identified lipopeptides likely contribute to the antifungal activity, and the morphological damage to S. rolfsii LC1 suggests a mechanism of action. This study underscores the importance of exploring microbial biocontrol agents as a sustainable alternative to chemical fungicides in the management of plant diseases. Further research into the genetic and functional aspects of B. velezensis LT1 could provide deeper insights into its biocontrol mechanisms and facilitate its application in agriculture.

13.
Technol Health Care ; 32(4): 2091-2105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517810

RESUMEN

BACKGROUND: Rituximab resistance is one of the great challenges in the treatment of diffuse large B-cell lymphoma (DLBCL), but relevant biomarkers and signalling pathways remain to be identified. Coptis chinensis and its active ingredients have antitumour effects; thus, the potential bioactive compounds and mechanisms through which Coptis chinensis acts against rituximab-resistant DLBCL are worth exploring. OBJECTIVE: To elucidate the core genes involved in rituximab-resistant DLBCL and the potential therapeutic targets of candidate monomers of Coptis chinensis. METHODS: Using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the Similarity Ensemble Approach and Swiss Target Prediction, the main ingredients and pharmacological targets of Coptis chinensis were identified through database searches. Through the overlap between the pharmacological targets of Coptis chinensis and the core targets of rituximab-resistant DLBCL, we identified the targets of Coptis chinensis against rituximab-resistant DLBCL and constructed an active compound-target interaction network. The targets and their corresponding active ingredients of Coptis chinensis against rituximab-resistant DLBCL were molecularly docked. RESULTS: Berberine, quercetin, epiberberine and palmatine, the active components of Coptis chinensis, have great potential for improving rituximab-resistant DLBCL via PIK3CG. CONCLUSION: This study revealed biomarkers and Coptis chinensis-associated molecular functions for rituximab-resistant DLBCL.


Asunto(s)
Biología Computacional , Coptis , Resistencia a Antineoplásicos , Linfoma de Células B Grandes Difuso , Simulación del Acoplamiento Molecular , Farmacología en Red , Rituximab , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Humanos , Rituximab/farmacología , Rituximab/uso terapéutico , Farmacología en Red/métodos , Coptis/química , Biología Computacional/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Medicina Tradicional China/métodos
14.
J Ethnopharmacol ; 324: 117790, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38253276

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SBG) and Coptis chinensis Franch (CCF) are traditional herbal medicine pairs used for clearing heat and eliminating dampness, stopping diarrhea, and detoxification. Traditionally, these two herbs are combined and decocted together, but the modern preparation procedures separate them to avoid the large amount of precipitation generated from co-decoction. Thus, a conflict lies between the traditional and modern extraction processes of Scutellaria baicalensis Georgi - Coptis chinensis Franch (SBG-CCF). AIM OF STUDY: There is a conflict between traditional medical practices of SBG-CCF and the modern formulation industry. In this study, we investigated the differences in the effects and mechanisms of SBG-CCF extracted by decocting separately and combining decoctions, as well as the scientific effectiveness of traditional and modern treatment methods on both. Acute alcoholic liver injury (ALI) rats were used as the pathological model. MATERIALS AND METHODS: SD rats were divided into 8 groups, including blank group, model group, low, medium, and high dose groups of SBG-CCF separated decoction, low, medium, and high dose groups of SBG-CCF combined decoction. Acute alcoholic liver injury model was induced in rats by gradually increasing the dose of alcohol through gavage everyday using white wine with an alcohol content 52%. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) were used as indicators to assess the intervention effect of SBG-CCF. And the potential active ingredients of SBG-CCF and the targets related to ALI were screened using network pharmacology, and the prediction results of network pharmacology were verified by quantitative real-time fluorescence PCR (qRT-PCR). RESULTS: SBG-CCF decoction alone and six combinations of decoctions have different degrees of improvement on alcoholic liver injury, with significant efficacy in the middle-dose group, and the combined decoction was superior to the individual decoction. SBG-CCF gavage can reduce the activity of AST, ALT, TC, TG, LDH, and MDA in the serum and liver of ALI rats, while increasing the levels of SOD and GSH. Network pharmacological analysis identified 39 active components, mainly flavonoids and alkaloids. Enrichment analysis suggested that SBG-CCF may treat ALI through the regulation of tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), interleukin-17 (IL-17), apoptosis, and the Toll-like receptor signaling pathways. The key targets in the Disease-Signaling Pathway-Target Network were MAPK8, IKBKB, MAPK10, MAPK3, MAPK1, and AKT1. qRT-PCR results indicated that targets regulating inflammation and lipid metabolism are MAPK8, MAPK10, MAPK3, and AKT1. CONCLUSION: SBG-CCF separately extracts and combines decoction can alleviate acute alcoholic liver injury, and the effect of combined decoction is more significant than separate decoction, implying that the precipitate produced by the combination of the two is also an active substance. The resistance mechanism of SBG-CCF ALI may be related to the modulation of lipid metabolism, inhibition of lipid peroxidation, and oxidative stress. SBG-CCF has the characteristics of multi-component, multi-pathway, and multi-target resistance to ALI.


Asunto(s)
Coptis , Scutellaria , Ratas , Animales , Coptis chinensis , Scutellaria baicalensis , Ratas Sprague-Dawley , Hígado , Superóxido Dismutasa/metabolismo
15.
Ecotoxicol Environ Saf ; 271: 115940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218103

RESUMEN

Coptis chinensis Franch is a perennial herb from the Ranunculaceae family with a long history of medicinal use. As the medicinal part, the rhizome of coptis often accumulates excessive cadmium (Cd) even at low concentrations in the soil, which not only compromises its medicinal safety but also raises concerns about adverse effects on human health. Therefore, effective strategies are needed to mitigate this accumulation and ensure its safe use in traditional medicine. This study utilized transcriptome profiling and physiological analysis to explore molecular mechanisms associated with ecological significance and the active accumulation of Cd in C. chinensis. The response to Cd in C. chinensis was assessed through RNA sequencing, Cd determination and isoquinoline alkaloid measurement using its roots, stems, and leaves. The transcriptome revealed, a total of 2667, 2998, or 2815 up-regulated deferentially expressed genes in roots, stems or leaves in response to Cd exposure. Furthermore, we identified phenylpropanoid and isoquinoline alkaloid biosynthesis as the key pathways response to Cd exposure, which suggests that C. chinensis may improve its tolerance to Cd through regulating the phenylpropanoid biosynthesis pathway. Under Cd exposure, plant-pathogen interaction in leaves was identified as the key pathway, which indicates that upregulation of genes involved in plant-pathogen interaction could enhance disease resistance in C. chinensis. WGCNA analysis identified WRKY8 (Cluster-55763.31419) and WRKY47 (Cluster-55763.221590) as potential regulators of secondary metabolic synthesis and plant-pathogen interaction pathway in C. chinensis triggered by Cd. The measurement of berberine, coptisine, palmatine, and epiberberine also demonstrated that Cd simulated the four isoquinoline alkaloids in roots. Therefore, our study not only presented a transcriptome expression profiles that revealed significant upregulation of genes involved in metal transport and detoxification pathways but also suggested a possible mechanism to cope with Cd accumulation. This knowledge provides a new insight into gene manipulation for controlling Cd accumulation, enhancing resistance and promoting synthesis of secondary metabolites with potential medicinal properties in other medicinal plant species.


Asunto(s)
Alcaloides , Cadmio , Humanos , Cadmio/toxicidad , Coptis chinensis , Resistencia a la Enfermedad , Alcaloides/análisis , Perfilación de la Expresión Génica , Transcriptoma , Isoquinolinas
16.
Anal Chim Acta ; 1287: 342067, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182374

RESUMEN

BACKGROUND: The quality of traditional Chinese medicines (TCMs) directly impacts their clinical efficacy and drug safety, making standardization a critical component of modern TCMs. Surface-enhanced Raman spectroscopy (SERS) is an effective physical detection method with speed, sensitivity, and suitability for large sample analyses. In this study, a SERS analysis method was developed using a nano-silver sol as the matrix to address the interference of fluorescence components in TCMs and overcome the limitations of traditional detection methods. RESULTS: The higher sensitivity and efficiency of SERS was used, enabling detection of a single sample within 30 s. Coptis chinensis Franch. (CCF) was chosen as the model medicine, the nano-silver sol was used as the matrix, and CCF's fourteen main fluorescent alkaloids were tested as index components. Typical signal peaks of the main components in CCF corresponded to the bending deformation of the nitrogen-containing ring plane outer ring system, methoxy stretching vibration, and isoquinoline ring deformation vibration. Through SERS detection of different parts, the distribution content of the main active components in the cortex of CCF was found to be lower than that in the xylem and phloem. Additionally, rapid quality control analyses indicated that among the nine batches of original medicinal materials purchased from Emei and Guangxi, the main active ingredient showed a higher content. SIGNIFICANCE: A SERS-based method for the rapid localization and analysis of multiple components of TCMs was established. The findings highlight the potential of SERS as a valuable tool for the analysis and quality control of TCMs, especially for fluorescent components.


Asunto(s)
Alcaloides , Insuficiencia Cardíaca , Espectrometría Raman , Coptis chinensis , China , Isoquinolinas , Colorantes
17.
J Ethnopharmacol ; 318(Pt B): 117050, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37595814

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Coptis chinensis Franch. polysaccharide (CCP) and berberine (BBR) are the primary active components of Coptis chinensis Franch. BBR is clinically used for the treatment of intestinal infections and gastroenteritis. CCP was also reported to be effective for the treatment of ulcerative colitis (UC). However, whether CCP combined with BBR shows a synergistic effect on the treatment of UC has not been elucidated yet. AIM OF THE STUDY: This study aspired to investigate the therapeutic effect and the possible mechanisms of the combination of CCP with BBR on chronic UC. MATERIALS AND METHODS: By periodic administration of dextran sulfate sodium (DSS) to C57BL/6J mice, chronic UC model mice were induced. CCP (15 mg/kg), BBR (50 mg/kg), and CCP.BBR (a combination of 15 mg/kg CCP and 50 mg/kg BBR) were orally administered to the model mice for 10 days. Changes of body weight, disease activity index, colon length, organ index, histopathological damage, expression of cytokines, and intestinal tight junction proteins were determined to evaluate the therapeutic effects. 16S rDNA sequencing, targeted short-chain fatty acid metabolomics, qPCR, and western blotting were performed to elucidate the potential mechanism. RESULTS: Both CCP and BBR alleviated UC via improving colon pathological damage, inhibiting the inflammatory response, and regulating the expression of intestinal tight junction proteins. The combination of CCP with BBR showed a more substantial therapeutic effect via increasing the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, thereby increasing the contents of SCFAs in vivo and activating AhR/IL-22 pathway. CONCLUSION: The combination of CCP and BBR showed a synergistic effect on the therapy of chronic UC and the mechanism was associated with regulating gut microbiota and activating AhR/IL-22 pathway.


Asunto(s)
Berberina , Colitis Ulcerosa , Microbioma Gastrointestinal , Animales , Ratones , Ratones Endogámicos C57BL , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Berberina/farmacología , Berberina/uso terapéutico , Coptis chinensis , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Interleucina-22
18.
Front Pharmacol ; 14: 1312683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074160

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2022.907826.].

19.
Genes (Basel) ; 14(12)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38137054

RESUMEN

Coptis chinensis is a perennial herb of the Ranunculaceae family. The isoquinoline alkaloid is the main active component of C. chinensis, mainly exists in its rhizomes and has high clinical application potential. The in vitro synthesis of isoquinoline alkaloids is difficult because their structures are complex; hence, plants are still the main source of them. In this study, two-year and four-year rhizomes of C. chinensis were selected to investigate the effect of growth years on the accumulation of isoquinoline alkaloids. Two-year and four-year C. chinensis were selected for metabolomics detection and transcriptomic analysis. A total of 413 alkaloids were detected by metabolomics analysis, of which 92 were isoquinoline alkaloids. (S)-reticuline was a significantly different accumulated metabolite of the isoquinoline alkaloids biosynthetic pathway in C. chinensis between the two groups. The results of transcriptome analysis showed that a total of 464 differential genes were identified, 36 of which were associated with the isoquinoline alkaloid biosynthesis pathway of C. chinensis. Among them, 18 genes were correlated with the content of important isoquinoline alkaloids. Overall, this study provided a comprehensive metabolomic and transcriptomic analysis of the rapid growth stage of C. chinensis rhizome from the perspective of growth years. It brought new insights into the biosynthetic pathway of isoquinoline alkaloids and provided information for utilizing biotechnology to improve their contents in C. chinensis.


Asunto(s)
Alcaloides , Coptis , Coptis chinensis , Transcriptoma , Coptis/genética , Coptis/química , Coptis/metabolismo , Alcaloides/genética , Alcaloides/metabolismo , Metaboloma , Isoquinolinas/metabolismo
20.
Am J Chin Med ; 51(8): 2195-2220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37930330

RESUMEN

Coptis chinensis Franch (RC), has historically been used for the treatment of "Xiao Ke" and "Xia Li" symptoms in China. "Xia Li" is characterized by abdominal pain and diarrhea, which are similar to the clinical symptoms of ulcerative colitis (UC). For the first time, this study aims to compare the anti-colitis effects of berberine (BBR) and total RC alkaloids (TRCA) and investigate the underlying metabolites and gut microbiota biomarkers. Metabolomics results showed that several colitis-related biomarkers, including lysophosphatidyl ethanolamine, lysophosphatidylcholine, scopolamine-methyl-bromide, N1-methyl-2-pyridone-5-carboxamide, 4-hydroxyretinoic acid, and malic acid, were significantly improved in model mice after BBR and TRCA treatments. High-dose BBR and TRCA treatments reversed the mouse colon shortening caused by dextran sodium sulfate (DSS), alleviated bowel wall swelling, and reduced inflammatory cell infiltration. BBR and TRCA restored the damaged mucosa integrity in colitis mice by upregulating claudin 1 and occludin, preventing colon epithelium apoptosis by inhibiting the cleavage of caspase 3. Additionally, BBR and TRCA significantly decreased the richness of the pathogenic bacteria Bacteroides acidifaciens but increased the abundance of the probiotic Lactobacillus spp. Notably, TRCA exhibited superior anti-colitis effects to those of BBR. Thus, this agent warrants further study and application in the treatment of inflammatory bowel disease in the clinic.


Asunto(s)
Berberina , Colitis Ulcerosa , Colitis , Microbiota , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Berberina/farmacología , Coptis chinensis , Colon , Biomarcadores , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA