Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
1.
Sci Rep ; 14(1): 20390, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223172

RESUMEN

With the global consensus to achieve carbon neutral goals, power systems are experiencing a rapid increase in renewable energy sources and energy storage systems (ESS). Especially, recent development of hub substations (HS/S) equipped with ESS, applicable for resolving site constraints if implemented as mobile transformers, is expanding the development of ESS-equipped facilities. However, these units require centralized control strategies considering variability within integrated networks. While studies on electric vehicle charging considering the variability of renewable energy or load are widely studied, ESS management scheme for individual substations requires further optimization, especially considering the state of distributed sources at lower levels and transmission system operators. Thus, in this study, an optimal control approach for ESS located at the connection point of transmission and distribution systems, including further consideration of the loss in distribution lines and the constraints of renewable energy sources is presented. This study attempts to derive proactive control strategies for ESS in HS/S to operate with various distribution networks. By establishing control priorities for each source through optimal operation strategy, a suitable capacity of ESS and its economic benefits for distribution network management can be examined. Validation of the current analysis results is performed by utilizing MATPOWER. By adapting the operational range of design scenarios, diverse distribution systems can be tested against multiple configurations of connected devices.

2.
Explor Res Clin Soc Pharm ; 15: 100487, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39224692

RESUMEN

OBJECTIVE: This study aims to evaluate the effectiveness of the Quality Risk Management (QRM) system in hospital pharmacy intravenous admixture services (PIVAS). METHODS: Failure Modes and Effects Analysis (FMEA) and risk matrix methods were used to systematically assess the critical risk points in PIVAS. By collecting and comparing relevant data from 2019 to 2023, key performance indicators (KPIs) before and after the implementation of the QRM system were quantitatively evaluated. RESULTS: The results showed that the safety and efficiency of pharmacy services significantly improved after the implementation of the QRM system. The medication error rate significantly decreased from 3.2% to 1.1%, the average medication preparation time reduced from 15.5 min to 8.2 min, and staff satisfaction increased from 6.0 to 8.5 points. Other indicators, such as cross-contamination rates and handling errors, also showed significant improvement (all outcomes p < 0.001). DISCUSSION: Systematic risk management effectively enhanced the operational performance of PIVAS, reduced medication errors, and improved the quality of healthcare services. This study highlights the key role of QRM in enhancing medication safety and productivity, providing empirical support for the implementation of similar systems in other healthcare institutions.

3.
Sci Rep ; 14(1): 21389, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271706

RESUMEN

In recent years, microgrid technology has been widely studied and applied. However, with times developing, the installed capacity of distributed power generation devices has been improved, and work is being carried out in increasingly complex situations, resulting in a decline in the control performance of microgrids. In view of this, to effectively improve inverter's control performance, research is conducted on the fusion of Narendra model and adaptive control strategies for real-time voltage correction and compensation in complex situations. Compared to traditional inverters, inverters under research methods have faster voltage recovery speed when encountering load switching, and can recover in about one cycle, with good control performance. In the comparison between the improved inverter adaptive control system and the inverter adaptive system, the improved inverter voltage recovery speed is faster, can be restored within one cycle, and the control effect of the inverter is better. The harmonic rate of the port voltage has decreased from 10.43 to 1.92%. The applicability of the research method was verified. It indicats that the research method can improve inverter's control effect and solve problems such as voltage deviation, three-phase asymmetry, harmonic pollution, etc. that are easily generated by the output terminal voltage. Simultaneously, research has provided theoretical basis and data support for the research of microgrids.

4.
Sci Rep ; 14(1): 20371, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223150

RESUMEN

An abundance of degrees of freedom (DOF) exist when executing a countermovement jump (CMJ). This research aims to simplify the understanding of this complex system by comparing jump performance and independent functional DOF (fDOF) present in CMJs without (CMJNoArms) and with (CMJArms) an arm swing. Principal component analysis was used on 39 muscle forces and 15 3-dimensional joint contact forces obtained from kinematic and kinetic data, analyzed in FreeBody (a segment-based musculoskeletal model). Jump performance was greater in CMJArms with the increased ground contact time resulting in higher external (p = 0.012), hip (p < 0.001) and ankle (p = 0.009) vertical impulses, and slower hip extension enhancing the proximal-to-distal joint extension strategy. This allowed the hip muscles to generate higher forces and greater time-normalized hip vertical impulse (p = 0.006). Three fDOF were found for the muscle forces and 3-dimensional joint contact forces during CMJNoArms, while four fDOF were present for CMJArms. This suggests that the underlying anatomy provides mechanical constraints during a CMJ, reducing the demand on the control system. The additional fDOF present in CMJArms suggests that the arms are not mechanically coupled with the lower extremity, resulting in additional variation within individual motor strategies.


Asunto(s)
Brazo , Músculo Esquelético , Humanos , Fenómenos Biomecánicos , Brazo/fisiología , Masculino , Músculo Esquelético/fisiología , Adulto , Adulto Joven , Articulación de la Cadera/fisiología , Articulación del Tobillo/fisiología , Movimiento/fisiología , Rango del Movimiento Articular/fisiología , Femenino
5.
Bioengineering (Basel) ; 11(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39199712

RESUMEN

This paper proposes a novel finger-individuating exoskeleton system with a non-contact leader-follower control strategy that effectively combines motion functionality and individual adaptability. Our solution comprises the following two interactive components: the leader side and the follower side. The leader side processes joint angle information from the healthy hand during motion via a Leap Motion Controller as the system input, providing more flexible and active operations owing to the non-contact manner. Then, as the follower side, the exoskeleton is driven to assist the user's hand for rehabilitation training according to the input. The exoskeleton mechanism is designed as a universal module that can adapt to various digit sizes and weighs only 40 g. Additionally, the current motion of the exoskeleton is fed back to the system in real time, forming a closed loop to ensure control accuracy. Finally, four experiments validate the design effectiveness and motion performance of the proposed exoskeleton system. The experimental results indicate that our prototype can provide an average force of about 16.5 N for the whole hand during flexing, and the success rate reaches 82.03% in grasping tasks. Importantly, the proposed prototype holds promise for improving rehabilitation outcomes, offering diverse options for different stroke stages or application scenarios.

6.
Kurume Med J ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098031

RESUMEN

OBJECTIVES: This study aimed to examine the effects of cognitive tasks during walking with perturbation on the cerebral blood flow. METHODS: The subjects were a total of 20 persons, consisting of 12 healthy adults aged 21-47 years (adult group) and 8 retirement home residents aged 67-85 years who led an independent daily life and could walk independently (elderly group). Oxyhemoglobin was measured using wireless functional near-infrared spectroscopy (fNIRS). An analysis was conducted using the Wilcoxon rank sum test to compare the variation of oxyhemoglobin between walking with perturbation (WP) and walking with perturbation and cognitive tasks (WPC) in each group. In addition, we compared the variation of oxyhemoglobin between groups by analysis of covariance adjusting for the value of WP. RESULTS: In the adult group, the left and right oxyhemoglobin significantly increased under WPC (p=0.0122, 0.0015, respectively). On the other hand, in the elderly group, the right and left oxyhemoglobin did not significantly change under WPC. CONCLUSIONS: These results suggest that the effect of a cognitive task during unstable walking conditions differs between healthy adults and elderly persons, and that this may be important when considering postural control strategies, especially in the elderly.

7.
J Phys Ther Sci ; 36(8): 420-424, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39092420

RESUMEN

[Purpose] This study aimed to examine and verify temporal changes in lower limb joint action after 2 weeks of single-leg stance training under active restriction of knee movement. [Participants and Methods] The participants included 28 healthy adult females (mean age, 19.6 ± 1.0 years). A stabile meter was used to measure the center of pressure sway as an index of ankle joint action. In addition, a triaxial accelerometer was used to measure pelvic and knee sways as indices of hip and knee joint actions, respectively. We established two experimental groups: an active-restriction group and an unrestricted group. Measurements of lower limb joint actions were recorded thrice during single-leg stance exercises during the first session of practice, the third session 1 week later, and the sixth session 2 weeks later. [Results] Both groups exhibited shorter total trajectory lengths in sessions three and six than in the first session. The active restriction group showed less knee sway in later sessions, whereas the unrestricted group showed reduced pelvic sway in the third session. [Conclusion] Single-leg stance exercises with active restriction of knee movement may alter the strategy of lower limb joint action.

8.
Environ Sci Technol ; 58(35): 15381-15394, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39136294

RESUMEN

China is confronting the dual challenges of air pollution and climate change, mandating the co-control of air pollutants and CO2 emissions from their shared sources. Here we identify key sources for co-control that prioritize the mitigation of PM2.5-related health burdens, given the homogeneous impacts of CO2 emissions from various sources. By applying an integrated analysis framework that consists of a detailed emission inventory, a chemical transport model, a multisource fused dataset, and epidemiological concentration-response functions, we systematically evaluate the contribution of emissions from 390 sources (30 provinces and 13 socioeconomic sectors) to PM2.5-related health impacts and CO2 emissions, as well as the marginal health benefits of CO2 abatement across China. The estimated source-specific contributions exhibit substantial disparities, with the marginal benefits varying by 3 orders of magnitude. The rural residential, transportation, metal, and power and heating sectors emerge as pivotal sources for co-control, with regard to their relatively large marginal benefits or the sectoral total benefits. In addition, populous and heavily industrialized provinces such as Shandong and Henan are identified as the key regions for co-control. Our study highlights the significance of incorporating health benefits into formulating air pollution and carbon co-control strategies for improving the overall social welfare.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Dióxido de Carbono , China , Dióxido de Carbono/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Cambio Climático , Monitoreo del Ambiente
9.
Regen Ther ; 26: 489-495, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39131505

RESUMEN

Introduction: Cell-processing facilities face the risk of environmental bacteria contaminating biosafety cabinets during processing, and manual handling of autologous cell products can result in contamination. We propose a risk- and evidence-based cleaning method for cross-contamination, emphasizing proteins and DNA. Methods: The transition and residual risks of the culture medium were assessed by measuring both wet and dried media using fluorescence intensity. Residual proteins and DNA in dried culture medium containing HT-1080 cells were analyzed following ultraviolet (UV) irradiation, wiping, and disinfectant treatment. Results: Wet conditions showed a higher transition to distilled water (DW), whereas dry conditions led to higher residual amounts on SUS304 plates. Various cleaning methods for residual culture medium were examined, including benzalkonium chloride with a corrosion inhibitor (BKC + I) and DW wiping, which demonstrated significantly lower residual protein and DNA compared to other methods. Furthermore, these cleaning methods were tested for residual medium containing cells, with BKC + I and DW wiping resulting in an undetectable number of cells. However, in some instances, proteins and DNA remained. Conclusions: The study compared cleaning methods for proteins and DNA in cell products, revealing their advantages and disadvantages. Peracetic acid (PAA) proved effective for nucleic acids but not proteins, while UV irradiation was ineffective against both proteins and DNA. Wiping emerged as the most effective method, even though traceability remained challenging. However, wiping with ETH was not effective as it caused protein immobilization. Understanding the characteristics of these cleaning methods is crucial for developing effective contamination control strategies.

10.
Drug Dev Ind Pharm ; 50(7): 646-657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39072436

RESUMEN

OBJECTIVE: This work aims to present a Quality-by-Design (QbD) step-by-step methodology to formulate anti-ulcer and gastro-protective oral suspensions. METHODS: Sucralfate was used as a drug model. The Quality Target Product Profile was established early during preformulation. Viscosity, resuspendability, pH, and density were assessed through the screening of several suspension platforms based on different prototype compositions. A compatibility study between the active pharmaceutical ingredient and the excipients was performed by thermal analysis and infrared spectroscopy. An Ishikawa fishbone diagram and Failure Mode and Effect Analysis were employed to identify the Critical Material Attributes (CMAs), Critical Process Parameters (CPPs), and Critical Quality Attributes (CQAs). CMAs' and CPPs' impact on identified CQAs was further assessed through a 22 full factorial experimental design at normal conditions after manufacture and one month at super-accelerated stress conditions. Results: The lead prototype exhibited no physicochemical incompatibilities. The risk assessment tools revealed that the concentration of the wetting agent and the total concentration of thickening agents represented critical factors for the quality profile of the preparation in terms of viscosity. The optimized formulation comprising 1.125 w/v% total concentration of Natrosol 250 HX and Avicel RC 591 exhibited an enhanced performance according to the established profile. CONCLUSIONS: The analytical and physicochemical tests showed the robustness and compliance of the final preparation with the quality profile. The proposed step-by-step methodology based on QbD, Design of Experiments, and Quality Risk Management presented in our research holds practical implications for local industries and formulation scientists involved in the development of oral suspensions.


Asunto(s)
Antiulcerosos , Química Farmacéutica , Composición de Medicamentos , Excipientes , Sucralfato , Suspensiones , Antiulcerosos/administración & dosificación , Antiulcerosos/química , Viscosidad , Excipientes/química , Sucralfato/administración & dosificación , Sucralfato/química , Administración Oral , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Concentración de Iones de Hidrógeno
11.
Ecotoxicol Environ Saf ; 282: 116709, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024943

RESUMEN

Biofilms, intricate microbial communities that attach to surfaces, especially medical devices, form an exopolysaccharide matrix, which enables bacteria to resist environmental pressures and conventional antimicrobial agents, leading to the emergence of multi-drug resistance. Biofilm-related infections associated with medical devices are a significant public health threat, compromising device performance. Therefore, developing effective methods for supervising and managing biofilm growth is imperative. This in-depth review presents a systematic overview of strategies for monitoring and controlling bacterial biofilms. We first outline the biofilm creation process and its regulatory mechanisms. The discussion then progresses to advancements in biosensors for biofilm detection and diverse treatment strategies. Lastly, this review examines the obstacles and new perspectives associated with this domain to facilitate the advancement of innovative monitoring and control solutions. These advancements are vital in combating the spread of multi drug-resistant bacteria and mitigating public health risks associated with infections from biofilm formation on medical instruments.


Asunto(s)
Biopelículas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Técnicas Biosensibles/métodos , Equipos y Suministros/microbiología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple
12.
Crit Rev Food Sci Nutr ; : 1-25, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054781

RESUMEN

Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.

13.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000916

RESUMEN

With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire systems, are extensively employed in vehicles. Concurrently, unavoidable issues such as conflicting control system objectives and execution system interference emerge, positioning integrated chassis control as an effective solution to these challenges. This paper proposes a model predictive control-based longitudinal dynamics integrated chassis control system for pure electric commercial vehicles equipped with electro-mechanical brake (EMB) systems, centralized drive, and distributed braking. This system integrates acceleration slip regulation (ASR), a braking force distribution system, an anti-lock braking system (ABS), and a direct yaw moment control system (DYC). This paper first analyzes and models the key components of the vehicle. Then, based on model predictive control (MPC), it develops a controller model for integrated stability with double-layer torque distribution. The required driving and braking torque for each wheel are calculated according to the actual and desired motion states of the vehicle and applied to the corresponding actuators. Finally, the effectiveness of this strategy is verified through simulation results from Matlab/Simulink. The simulation shows that the braking deceleration of the braking condition is increased by 32% on average, and the braking distance is reduced by 15%. The driving condition can enter the smooth driving faster, and the time is reduced by 1.5 s~5 s. The lateral stability parameters are also very much improved compared with the uncontrolled vehicles.

14.
One Health ; 18: 100683, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39010971

RESUMEN

Brucellosis, caused by Brucella spp., is a re-emerging One Health disease with increased prevalence and incidence in Chinese dairy cattle and humans, severely affecting animal productivity and public health. In dairy cattle, B. abortus is the primary causative agent although infections with other Brucella species occur occasionally. However, the epidemiological and comparative importance of B. abortus in dairy cattle and humans remains inadequately understood throughout China due to the heterogeneity in locations, quality, and study methods. This scoping review aims to describe the changing status of B. abortus infection in dairy cattle and humans, investigate the circulating Brucella species and biovars, and identify factors driving the disease transmission by retrieving publicly accessible literature from four databases. After passing the prespecified inclusion criteria, 60 original articles were included in the final synthesis. Although the reported animal-level and farm-level prevalence of brucellosis in dairy cattle was lower compared to other endemic countries (e.g. Iran and India), it has been reported to increase over the last decade. The incidence of brucellosis in humans displayed seasonal increases. The Rose Bengal Test and Serum Agglutination Test, interpreted in series, were the most used serological test to diagnose Brucella spp. in dairy cattle and humans. B. abortus biovar 3 was the predominant species (81.9%) and biovar (70.3%) in dairy cattle, and B. melitensis biovar 3 was identified as the most commonly detected strain in human brucellosis cases. These strains were mainly clustered in Inner Mongolia and Shannxi Province (75.7%), limiting the generalizability of the results to other provinces. Live cattle movement or trade was identified as the key factor driving brucellosis transmission, but its transmission pattern remains unknown within the Chinese dairy sector. These knowledge gaps require a more effective One Health approach to be bridged. A coordinated and evidence-based research program is essential to inform regional or national control strategies that are both feasible and economical in the Chinese context.

15.
Environ Sci Technol ; 58(28): 12320-12329, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38973717

RESUMEN

Reducing air pollutants and CO2 emissions from energy utilization is crucial for achieving the dual objectives of clean air and carbon neutrality in China. Thus, an optimized health-oriented strategy is urgently needed. Herein, by coupling a CO2 and air pollutants emission inventory with response surface models for PM2.5-associated mortality, we shed light on the effectiveness of protecting human health and co-CO2 benefit from reducing fuel-related emissions and generate a health-oriented strategy for the Yangtze River Delta (YRD). Results reveal that oil consumption is the primary contributor to fuel-related PM2.5 pollution and premature deaths in the YRD. Significantly, curtailing fuel consumption in transportation is the most effective measure to alleviate the fuel-related PM2.5 health impact, which also has the greatest cobenefits for CO2 emission reduction on a regional scale. Reducing fuel consumption will achieve substantial health improvements especially in eastern YRD, with nonroad vehicle emission reductions being particularly impactful for health protection, while on-road vehicles present the greatest potential for CO2 reductions. Scenario analysis confirms the importance of mitigating oil consumption in the transportation sector in addressing PM2.5 pollution and climate change.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Carbono , China , Contaminación del Aire/prevención & control , Ríos/química , Material Particulado , Humanos , Emisiones de Vehículos
16.
Appl Microbiol Biotechnol ; 108(1): 399, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951177

RESUMEN

Dehydroepiandrosterone (DHEA) has a promising market due to its capacity to regulate human hormone levels as well as preventing and treating various diseases. We have established a chemical esterification coupled biocatalytic-based scheme by lipase-catalyzed 4-androstene-3,17-dione (4-AD) hydrolysis to obtain the intermediate product 5-androstene-3,17-dione (5-AD), which was then asymmetrically reduced by a ketoreductase from Sphingomonas wittichii (SwiKR). Co-enzyme required for KR is regenerated by a glucose dehydrogenase (GDH) from Bacillus subtilis. This scheme is more environmentally friendly and more efficient than the current DHEA synthesis pathway. However, a significant amount of 4-AD as by-product was detected during the catalytic process. Focused on the control of by-products, we investigated the source of 4-AD and identified that it is mainly derived from the isomerization activity of SwiKR and GDH. Increasing the proportion of glucose in the catalytic system as well as optimizing the catalytic conditions drastically reduced 4-AD from 24.7 to 6.5% of total substrate amount, and the final yield of DHEA achieved 40.1 g/L. Furthermore, this is the first time that both SwiKR and GDH have been proved to be promiscuous enzymes with dehydrogenase and ketosteroid isomerase (KSI) activities, expanding knowledge of the substrate diversity of the short-chain dehydrogenase family enzymes. KEY POINTS: • A strategy of coupling lipase, ketoreductase, and glucose dehydrogenase in producing DHEA from 4-AD • Both SwiKR and GDH are identified with ketosteroid isomerase activity. • Development of catalytic strategy to control by-product and achieve highly selective DHEA production.


Asunto(s)
Deshidroepiandrosterona , Lipasa , Sphingomonas , Deshidroepiandrosterona/metabolismo , Lipasa/metabolismo , Sphingomonas/enzimología , Sphingomonas/metabolismo , Biocatálisis , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Glucosa 1-Deshidrogenasa/metabolismo , Glucosa 1-Deshidrogenasa/genética , Androstenodiona/metabolismo , Androstenodiona/biosíntesis , Hidrólisis
17.
Sci Total Environ ; 946: 174190, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936731

RESUMEN

Ecological security (ES) is a crucial indicator for assessing the sustainable development of a region. Currently, most studies on ES primarily focus on process analysis, and the integration of environmental variability into the development of tailored control strategies for regions with varying ecological quality is overlooked. Therefore, in this study, we identified regional ES change processes, employed an optimized system to calculate the ecological security index (ESI), and identified ecological corridors (ECs) through the Minimum Constrained Resource (MCR) model to determine zoning strategies for typical arid regions, using the Ningxia region in the Yellow River Basin of China as an example. The findings showed that (1) from 2006 to 2020, the ESI values of most regions were between 0.2 and 0.4, with small but consistent increases in the ESI values over the years. (2) The proportion of regions with high ES ratings increased by 9.08 % across all districts and counties, and the center of gravity of ES shifted in a north-south and east-west direction. (3) The ESI exhibited a strong positive spatial correlation, characterized by spatial diffusion and spillover effects in most regions. (4) The ECs were predominantly distributed in a north-south direction, involving a total of 20 districts and counties. Based on the principles of sustainable development, we developed a model for the dynamic identification and zoning control of regional ES, aiming to provide a practical framework for effective ecological restoration and protection measures. Additionally, the strategies and methodologies presented in this study serve as important references for similar regions worldwide to facilitate the zoning control of ES, highlighting the broader significance and applicability of the study.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38942484

RESUMEN

Microbiological contamination may cause microbial proliferation and consequently additional problems for pharmaceutical companies through production stoppage, product contamination, investigations of process deviations, out-of-specification results and product disposal. This is one of the major concerns of the regulatory health agencies. Microbiological load (bioburden) may represent a potential risk for patients if the sterilization process is not effective and/or due to the production of toxins. Although bioburden can be eliminated by terminal sterilization or filtration processes, it is important to monitor the amount and determine the identity and characteristics of the microorganisms present prior to final processing. The application of microorganism identification systems is crucial for identifying the type of contamination, which can be extremely useful for investigating. The aim of this study was to evaluate the profiles of microorganisms identified in bioburden assays from solutions, culture medias, and products (SCP) from a pharmaceutical industry facility. From 2018-2020, a total of 1,078 samples from 857 different lots of SCP were analyzed and isolated microorganisms were identified. A prefiltering step was included after March 2020, in order to reduce the bioburden before sterilizing filtration. Criteria for the definition and management of microorganisms identified were evaluated after an integrative bibliographic review, and three groups were proposed (critical, objectionable, and nonobjectionable microorganisms). For the samples that did not include prefiltering (n=636), 227 (35.7%) presented microbial growth. For those that included prefiltering, before prefiltering (n=221), 60.6% presented microbial growth, and after prefiltering, this value was reduced to 4.1%, which can be attributed to a contamination during the sampling or a wrong filtering. From the samples that presented microbial growth, 678 microorganisms were identified as bacteria and 59 as molds and yeasts. A total of 120 microorganisms (56 and 27 Gram-positive and negative bacteria, respectively, 31 yeasts, and six filamentous molds) could not be identified, and the remaining microorganisms were classified as objectionable (n=507; 82.2%), nonobjectionable (n=103; 16.7%) and critical (n=7; 1.1%). Most of the bioburden species (>80.0%) were considered objectionable microorganisms. A process for classification and management of bioburden analysis results based on a literature review of pathogenic and physiological characteristics of the microorganisms was proposed.

19.
Animals (Basel) ; 14(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38929435

RESUMEN

African swine fever (ASF), a highly contagious disease of swine, has posed a significant global threat to the swine industry. As an archipelago, the Philippines has a geographic advantage when it comes to the risk of ASF transmission. However, since its introduction to the Philippines in 2019, it has proliferated not only in backyard and commercial farms but also in wild pig populations. While certain parts of the country were more affected than others, the epidemiologic features of ASF necessitate that all affected areas must be closely monitored and that confirmed cases be treated with the utmost care. With the very limited data on ASF epidemiology and surveillance in the Philippines, future efforts to combat ASF must place even greater emphasis on improved prevention and control strategies. It is worth mentioning that the government's efforts toward comprehensive ASF surveillance and epidemiological investigation into the possible ASFV sources or transmission pathways are the most important measures in the prevention and control of ASF outbreaks. This review article provides a comprehensive overview of the current swine industry and ASF situation in the Philippines, which includes its epidemiology, surveillance, prevention, and control strategies.

20.
Environ Sci Technol ; 58(26): 11568-11577, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38889013

RESUMEN

Dinitrogen pentoxide (N2O5) plays an essential role in tropospheric chemistry, serving as a nocturnal reservoir of reactive nitrogen and significantly promoting nitrate formations. However, identifying key environmental drivers of N2O5 formation remains challenging using traditional statistical methods, impeding effective emission control measures to mitigate NOx-induced air pollution. Here, we adopted machine learning assisted by steady-state analysis to elucidate the driving factors of N2O5 before and during the 2022 Winter Olympics (WO) in Beijing. Higher N2O5 concentrations were observed during the WO period compared to the Pre-Winter-Olympics (Pre-WO) period. The machine learning model accurately reproduced ambient N2O5 concentrations and showed that ozone (O3), nitrogen dioxide (NO2), and relative humidity (RH) were the most important driving factors of N2O5. Compared to the Pre-WO period, the variation in trace gases (i.e., NO2 and O3) along with the reduced N2O5 uptake coefficient was the main reason for higher N2O5 levels during the WO period. By predicting N2O5 under various control scenarios of NOx and calculating the nitrate formation potential from N2O5 uptake, we found that the progressive reduction of nitrogen oxides initially increases the nitrate formation potential before further decreasing it. The threshold of NOx was approximately 13 ppbv, below which NOx reduction effectively reduced the level of night-time nitrate formations. These results demonstrate the capacity of machine learning to provide insights into understanding atmospheric nitrogen chemistry and highlight the necessity of more stringent emission control of NOx to mitigate haze pollution.


Asunto(s)
Contaminantes Atmosféricos , Atmósfera , Aprendizaje Automático , Contaminantes Atmosféricos/análisis , Atmósfera/química , Óxidos de Nitrógeno/análisis , Contaminación del Aire , Ozono/análisis , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA