Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vis Comput Ind Biomed Art ; 5(1): 15, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668216

RESUMEN

Deep simulations have gained widespread attention owing to their excellent acceleration performances. However, these methods cannot provide effective collision detection and response strategies. We propose a deep interactive physical simulation framework that can effectively address tool-object collisions. The framework can predict the dynamic information by considering the collision state. In particular, the graph neural network is chosen as the base model, and a collision-aware recursive regression module is introduced to update the network parameters recursively using interpenetration distances calculated from the vertex-face and edge-edge tests. Additionally, a novel self-supervised collision term is introduced to provide a more compact collision response. This study extensively evaluates the proposed method and shows that it effectively reduces interpenetration artifacts while ensuring high simulation efficiency.

2.
ACM Trans Graph ; 33(6)2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25568589

RESUMEN

We present fast algorithms to perform accurate CCD queries between triangulated models. Our formulation uses properties of the Bernstein basis and Bézier curves and reduces the problem to evaluating signs of polynomials. We present a geometrically exact CCD algorithm based on the exact geometric computation paradigm to perform reliable Boolean collision queries. Our algorithm is more than an order of magnitude faster than prior exact algorithms. We evaluate its performance for cloth and FEM simulations on CPUs and GPUs, and highlight the benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA