Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1225557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130718

RESUMEN

Introduction: The World Health Organization (WHO) has assessed the global public risk of monkeypox as moderate, and 71 WHO member countries have reported more than 14,000 cases of monkeypox infection. At present, the identification of clinical symptoms of monkeypox mainly depends on traditional medical means, which has the problems of low detection efficiency and high detection cost. The deep learning algorithm is excellent in image recognition and can extract and recognize image features quickly and reliably. Methods: Therefore, this paper proposes a residual convolutional neural network based on the λ function and contextual transformer (LaCTResNet) for the image recognition of monkeypox cases. Results: The average recognition accuracy of the neural network model is 91.85%, which is 15.82% higher than that of the baseline model ResNet50 and better than the classical convolutional neural networks models such as AlexNet, VGG16, Inception-V3, and EfficientNet-B5. Discussion: This method realizes high-precision identification of skin symptoms of the monkeypox virus to provide a fast and reliable auxiliary diagnosis method for monkeypox cases for front-line medical staff.


Asunto(s)
Mpox , Humanos , Mpox/diagnóstico , Redes Neurales de la Computación , Algoritmos
2.
Front Plant Sci ; 14: 1223410, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662161

RESUMEN

Introduction: Accurate grading identification of tea buds is a prerequisite for automated tea-picking based on machine vision system. However, current target detection algorithms face challenges in detecting tea bud grades in complex backgrounds. In this paper, an improved YOLOv7 tea bud grading detection algorithm TBC-YOLOv7 is proposed. Methods: The TBC-YOLOv7 algorithm incorporates the transformer architecture design in the natural language processing field, integrating the transformer module based on the contextual information in the feature map into the YOLOv7 algorithm, thereby facilitating self-attention learning and enhancing the connection of global feature information. To fuse feature information at different scales, the TBC-YOLOv7 algorithm employs a bidirectional feature pyramid network. In addition, coordinate attention is embedded into the critical positions of the network to suppress useless background details while paying more attention to the prominent features of tea buds. The SIOU loss function is applied as the bounding box loss function to improve the convergence speed of the network. Result: The results of the experiments indicate that the TBC-YOLOv7 is effective in all grades of samples in the test set. Specifically, the model achieves a precision of 88.2% and 86.9%, with corresponding recall of 81% and 75.9%. The mean average precision of the model reaches 87.5%, 3.4% higher than the original YOLOv7, with average precision values of up to 90% for one bud with one leaf. Furthermore, the F1 score reaches 0.83. The model's performance outperforms the YOLOv7 model in terms of the number of parameters. Finally, the results of the model detection exhibit a high degree of correlation with the actual manual annotation results ( R2 =0.89), with the root mean square error of 1.54. Discussion: The TBC-YOLOv7 model proposed in this paper exhibits superior performance in vision recognition, indicating that the improved YOLOv7 model fused with transformer-style module can achieve higher grading accuracy on densely growing tea buds, thereby enables the grade detection of tea buds in practical scenarios, providing solution and technical support for automated collection of tea buds and the judging of grades.

3.
Front Physiol ; 14: 1138257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675283

RESUMEN

Coronary artery segmentation is an essential procedure in the computer-aided diagnosis of coronary artery disease. It aims to identify and segment the regions of interest in the coronary circulation for further processing and diagnosis. Currently, automatic segmentation of coronary arteries is often unreliable because of their small size and poor distribution of contrast medium, as well as the problems that lead to over-segmentation or omission. To improve the performance of convolutional-neural-network (CNN) based coronary artery segmentation, we propose a novel automatic method, DR-LCT-UNet, with two innovative components: the Dense Residual (DR) module and the Local Contextual Transformer (LCT) module. The DR module aims to preserve unobtrusive features through dense residual connections, while the LCT module is an improved Transformer that focuses on local contextual information, so that coronary artery-related information can be better exploited. The LCT and DR modules are effectively integrated into the skip connections and encoder-decoder of the 3D segmentation network, respectively. Experiments on our CorArtTS2020 dataset show that the dice similarity coefficient (DSC), Recall, and Precision of the proposed method reached 85.8%, 86.3% and 85.8%, respectively, outperforming 3D-UNet (taken as the reference among the 6 other chosen comparison methods), by 2.1%, 1.9%, and 2.1%.

4.
Artif Intell Med ; 143: 102637, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37673569

RESUMEN

Accurate airway segmentation from computed tomography (CT) images is critical for planning navigation bronchoscopy and realizing a quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). Existing methods face difficulty in airway segmentation, particularly for the small branches of the airway. These difficulties arise due to the constraints of limited labeling and failure to meet clinical use requirements in COPD. We propose a two-stage framework with a novel 3D contextual transformer for segmenting the overall airway and small airway branches using CT images. The method consists of two training stages sharing the same modified 3D U-Net network. The novel 3D contextual transformer block is integrated into both the encoder and decoder path of the network to effectively capture contextual and long-range information. In the first training stage, the proposed network segments the overall airway with the overall airway mask. To improve the performance of the segmentation result, we generate the intrapulmonary airway branch label, and train the network to focus on producing small airway branches in the second training stage. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analyses demonstrate that our proposed method extracts significantly more branches and longer lengths of the airway tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
5.
Med Biol Eng Comput ; 61(10): 2649-2663, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37420036

RESUMEN

Transformer-based methods have led to the revolutionizing of multiple computer vision tasks. Inspired by this, we propose a transformer-based network with a channel-enhanced attention module to explore contextual and spatial information in non-contrast (NC) and contrast-enhanced (CE) computed tomography (CT) images for pulmonary vessel segmentation and artery-vein separation. Our proposed network employs a 3D contextual transformer module in the encoder and decoder part and a double attention module in skip connection to effectively finish high-quality vessel and artery-vein segmentation. Extensive experiments are conducted on the in-house dataset and the ISICDM2021 challenge dataset. The in-house dataset includes 56 NC CT scans with vessel annotations and the challenge dataset consists of 14 NC and 14 CE CT scans with vessel and artery-vein annotations. For vessel segmentation, Dice is 0.840 for CE CT and 0.867 for NC CT. For artery-vein separation, the proposed method achieves a Dice of 0.758 of CE images and 0.602 of NC images. Quantitative and qualitative results demonstrated that the proposed method achieved high accuracy for pulmonary vessel segmentation and artery-vein separation. It provides useful support for further research associated with the vascular system in CT images. The code is available at https://github.com/wuyanan513/Pulmonary-Vessel-Segmentation-and-Artery-vein-Separation .


Asunto(s)
Suministros de Energía Eléctrica , Tomografía Computarizada por Rayos X , Arterias , Procesamiento de Imagen Asistido por Computador
6.
Math Biosci Eng ; 20(5): 8320-8336, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37161200

RESUMEN

Accurate depiction of individual teeth from CBCT images is a critical step in the diagnosis of oral diseases, and the traditional methods are very tedious and laborious, so automatic segmentation of individual teeth in CBCT images is important to assist physicians in diagnosis and treatment. TransUNet has achieved success in medical image segmentation tasks, which combines the advantages of Transformer and CNN. However, the skip connection taken by TransUNet leads to unnecessary restrictive fusion and also ignores the rich context between adjacent keys. To solve these problems, this paper proposes a context-transformed TransUNet++ (CoT-UNet++) architecture, which consists of a hybrid encoder, a dense connection, and a decoder. To be specific, a hybrid encoder is first used to obtain the contextual information between adjacent keys by CoTNet and the global context encoded by Transformer. Then the decoder upsamples the encoded features by cascading upsamplers to recover the original resolution. Finally, the multi-scale fusion between the encoded and decoded features at different levels is performed by dense concatenation to obtain more accurate location information. In addition, we employ a weighted loss function consisting of focal, dice, and cross-entropy to reduce the training error and achieve pixel-level optimization. Experimental results demonstrate that the proposed CoT-UNet++ method outperforms the baseline models and can obtain better performance in tooth segmentation.


Asunto(s)
Suministros de Energía Eléctrica , Entropía
7.
Healthcare (Basel) ; 11(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37046927

RESUMEN

Electrocardiogram (ECG) is an efficient and simple method for the diagnosis of cardiovascular diseases and has been widely used in clinical practice. Because of the shortage of professional cardiologists and the popularity of electrocardiograms, accurate and efficient arrhythmia detection has become a hot research topic. In this paper, we propose a new multi-task deep neural network, which includes a shared low-level feature extraction module (i.e., SE-ResNet) and a task-specific classification module. Contextual Transformer (CoT) block is introduced in the classification module to dynamically model the local and global information of ECG feature sequence. The proposed method was evaluated on public CPSC2018 and PTB-XL datasets and achieved an average F1 score of 0.827 on the CPSC2018 dataset and an average F1 score of 0.833 on the PTB-XL dataset.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA