Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Sci Total Environ ; 951: 175563, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153620

RESUMEN

Institutional controls, as an important measure for risk management of contaminated sites, is widely used in site management by the United States, Canada and European countries. At present, some regions in China have also begun to explore the implementation of institutional controls, but its path, safeguard mechanism, and tracking evaluation are still unclear. Based on China's unique contaminated site remediation control system and land management system, this paper proposes a framework for the whole life cycle institutional controls of China's contaminated sites: (1) evaluate the need for institutional controls; (2) establish the objectives of institutional controls; (3) identify the restrictive requirements of institutional controls; (4) establish the implementation form of institutional controls; and (5) regularly review the effectiveness of institutional controls. To demonstrate the applicability of the institutional control framework, a case demonstration study was conducted at a petrochemical contaminated site in China. By analyzing the information on residual pollutants after the implementation of risk management measures at the site, the exposure pathways and hazards in case of re-release, and the engineering facilities, we proposed eight restrictive requirements, including the prohibition of disturbing and damaging the clean and planted soil layers of the site and the protection of long-term monitoring wells. At the same time, we constructed a multi-departmental pathway to implement institutional controls in conjunction with ecological environment, natural resources and housing departments to ensure effective implementation of institutional controls. Eventually, we summarized a set of replicable and generalizable institutional controls application models, which provide valuable theoretical and practical support for China and other local governments in the implementation of institutional controls at contaminated sites.

2.
Environ Res ; 262(Pt 1): 119763, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122164

RESUMEN

Bioremediation of PAHs-contaminated soil by immobilized enzymes is a promising technology. Nevertheless, the practical implementation of highly efficient enzymatic remediation remains confined to laboratory settings, with limited experience in full-scale applications. In this study, the extracellular enzymes from white rot fungi are fully applied to treat sites contaminated with PAHs by combining a new hydrogel microenvironment and a biopiling system. The full-scale project was conducted on silty loam soil contaminated with PAHs. In line with China's guidelines for construction land, 7 out of the 12 PAHs identified are considered to be a threat to the soil quality of construction sites, with benzo[a]pyrene levels reaching 1.50 mg kg-1, surpassing the acceptable limit of 0.55 mg kg-1 for the first type of land. After 7 days of remediation, the benzo[a]pyrene level decreased from 1.50 mg kg-1 to 0.51 mg kg-1, reaching the remediation standard of Class I screening values, with a removal rate of 66%. Microbiomes were utilized to assess the microbial biodiversity and structure analyses for PAHs biodegradation. The remediation enhanced the abundance of dominant bacterium (Marinobacter, Pseudomonas, and Truepera) and fugin (Thielavia, Neocosmospora, and Scedosporium). The research offers further insights into the exploration of soil remediation on the full-scale of the immobilized enzyme and biopiling technology.

3.
J Hazard Mater ; 479: 135662, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39216239

RESUMEN

Accurately ascertaining spatiotemporal distribution of pollution plume is critical for evaluating the effectiveness of remediation technologies and environmental risks associated with contaminated sites. This study concentrated on a typical Cr(VI) contaminated smelter being currently remediated using pump-and-treat (PAT) technology. Long-term on-site monitoring data revealed that two highly polluted regions with Cr(VI) concentrations of 162.9 mg/L and 234.5 mg/L existed within the contaminated site, corresponding to previous chromium slag yard and sewage treatment plant, respectively. The PAT technology showed significant removal performance in these highly polluted areas (>160 mg/L) after six months of pumping, ultimately achieving complete removal of the pollutants in these high-pollution areas. Numerical simulation results showed that although the current remediation scheme significantly reduced the Cr(VI) pollution degree, it did not effectively prevent the incursion of the pollution plume into the downstream residential area after 20 years. Additionally, an improved measure involving supplementary pumping wells was proposed, and its remediation effects were quantitatively evaluated. Results indicated that the environmental pollution risk of groundwater downstream could be effectively mitigated by adding pumping wells, resulting in a reduction of the pollution area by 20 % in the case of adding an internal well and 41 % with the addition of external wells after 20 years. The findings obtained in this study will provide an important reference and theoretical guidance for the reliability analysis and design improvement of the PAT remediation project.

4.
Epidemiol Prev ; 48(3): 210-219, 2024.
Artículo en Italiano | MEDLINE | ID: mdl-38995134

RESUMEN

OBJECTIVES: to evaluate the risk profile of hypospadias in Gela, an Italian National Priority Contaminated Site (NPCS) located in Sicily Region (Southern Italy), characterized by a significant excess of hypospadias in newborn residents compared to data from reference on regional, national, and international basis and, until 2014, by the presence of a petrochemical plant. DESIGN: geographical analyses were conducted by comparing the prevalence of the Gela municipality to prevalence found in Sicily, in a territorial area bordering Gela (ALG), and in the NPCSs of Milazzo and Priolo. The geographical comparisons were conducted for the period 2010-2020, the trend within the Gela NPCS was evaluated by comparing two subperiods (2010-2014 and 2015-2020). SETTING AND PARTICIPANTS: children up to 1 year of age with hypospadias resident in the municipality of Gela in the period 2010-2020. MAIN OUTCOMES MEASURES: crude odds ratios (OR) and respective 95% confidence intervals (95%CI) were used to compare the prevalence observed in Gela and that detected in the comparison areas. RESULTS: excess risk for hypospadias was highlighted in 2010-2020 in Gela vs Sicily (OR 4.45; 95%CI 3.45-5.75), vs ALG (OR 4.29; 95%CI 3.02-6.10), and vs the NPCSs of Milazzo (OR 2.32; 95%CI 1.32-4.07) and Priolo (OR 2.37; 95%CI 1.55-3.62). The between-period comparisons in Gela did not show an important difference between 2010-2014 and 2015-2020 (OR 1.37; 95%CI 0.83-2.24), with a prevalence of 98.9 and 72.4 per 10,000, respectively. CONCLUSIONS: the prevalence of hypospadias in 2015-2020 remains very high, although decreasing when compared to 2010-2014 period. The Gela data, despite the refinery being closed after 2014, suggest a complex situation in which multiple risk factors may play a role.


Asunto(s)
Hipospadias , Humanos , Hipospadias/epidemiología , Prevalencia , Masculino , Sicilia/epidemiología , Lactante , Recién Nacido , Italia/epidemiología , Industria del Petróleo y Gas , Exposición a Riesgos Ambientales/efectos adversos , Factores de Riesgo , Oportunidad Relativa
5.
Environ Pollut ; 356: 124380, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885828

RESUMEN

Understanding the mechanisms of natural source zone depletion (NSZD) will support an improved understanding of the long-term sustainability of NSZD as a site remedy and how NSZD rates may change over time. This is the first study that has quantified and compared the rate of three NSZD mechanisms (methanogenesis, vaporization, and aqueous biodegradation) between two chemically distinct light non-aqueous phase liquid (LNAPL) source zones (aliphatic-rich naphtha for Zone #1 vs aromatic-rich pyrolysis gasoline for Zone #2) within the same geologic and climate conditions. The rates of NSZD attributable to vaporization (400 mg C/m2/d vs. 300 mg C/m2/d) and aqueous biodegradation (92 mg C/m2/d vs. 67 mg C/m2/d) were similar for Zone #1 and #2; however, the rate of methanogenesis NSZD was 6x higher in Zone #1 (1000 mg C/m2/d vs. 170 mg C/m2/d). These results suggest that the aliphatic hydrocarbons content in an LNAPL source may be a factor in the rate of methanogenesis NSZD. For both Zone #1 and #2, total NSZD rate determined using this "three mechanism" measurement method was in reasonable agreement with two other methods used to measure total NSZD rates (CO2 Gradient Method and Dynamic Closed Chamber Method), validating the "three mechanism" method as a tool to measure the total NSZD rate at a site and to provide an improved understanding of the predominant NSZD mechanism. Overall, this study highlights the importance of LNAPL type and chemical characteristics in determining source zone natural attenuation mechanism and its total rates.


Asunto(s)
Biodegradación Ambiental , Metano/análisis , Gasolina , Monitoreo del Ambiente/métodos , Volatilización
6.
J Hazard Mater ; 472: 134481, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723483

RESUMEN

The membrane interface probe (MIP) is an efficient and economical in-situ tool for chlorinated hydrocarbon (CH) contaminated site investigation. Given that the interpretation of MIP test is currently limited to a qualitative level, a theoretical model considering multiphase flow and multifield coupling is firstly proposed to simulate MIP test process. This model can consider phase change, membrane effect, adsorption and dissolution of the CH liquid, gas diffusion, and evaporation. Then, the model is used to study the changes in soil temperature and soil CH concentration during MIP test, as well as the influences of soil CH concentration and soil properties (initial water saturation, soil intrinsic permeability, and thermal properties) on MIP response. Finally, a simplified MIP interpretation model is developed based on parametric analysis results and verified against field and laboratory test data. It is found that the soil CH concentration, rather than soil properties, dominates the MIP response. The simplified interpretation model can deliver practical prediction of the CH concentration through the detected results by MIP, which may improve the applicability of MIP.

7.
Sci Total Environ ; 927: 172256, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583613

RESUMEN

The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.


Asunto(s)
Monitoreo del Ambiente , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminantes del Suelo/análisis , China , Anaerobiosis , Suelo/química , Aerobiosis
8.
Huan Jing Ke Xue ; 45(5): 2939-2951, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629555

RESUMEN

Heavy metal pollution in soils of smelting sites is an important environmental problem to be solved urgently. Solidification technology has become one of the mainstream technologies for heavy metal remediation in contaminated sites owing to its shorter remediation time, low cost, and high treatment efficiency. On the basis of summarizing the latest research progress on the remediation of heavy metal pollution in sites by solidification in the past 10 years, this study focused on the mechanisms of solidification technology and analyzed the advantages and disadvantages of different mechanisms (mechanism of inorganic materials, mechanism of organic materials, mechanism of mechanical ball milling, and mechanism of microbial-induced carbonate mineralization (MICP)) and their scope of application. Then, according to the research focus and development trend presented by CiteSpace, the application prospects and limiting factors of MICP technology for the solidification and remediation of heavy metal pollution in sites were summarized from three aspects:the application of MICP in multi-metal remediation, the application of MICP composites in contaminated sites, and the influencing factors of MICP technology application. Finally, the prospects and challenges in solidification technology were put forward in order to provide reference for the future development.

9.
Environ Geochem Health ; 46(5): 146, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578375

RESUMEN

With the transformation and upgrading of industries, the environmental problems caused by industrial residual contaminated sites are becoming increasingly prominent. Based on actual investigation cases, this study analyzed the soil pollution status of a remaining sites of the copper and zinc rolling industry, and found that the pollutants exceeding the screening values included Cu, Ni, Zn, Pb, total petroleum hydrocarbons and 6 polycyclic aromatic hydrocarbon monomers. Based on traditional analysis methods such as the correlation coefficient and spatial distribution, combined with machine learning methods such as SOM + K-means, it is inferred that the heavy metal Zn/Pb may be mainly related to the production history of zinc rolling. Cu/Ni may be mainly originated from the production history of copper rolling. PAHs are mainly due to the incomplete combustion of fossil fuels in the melting equipment. TPH pollution is speculated to be related to oil leakage during the industrial use period and later period of vehicle parking. The results showed that traditional analysis methods can quickly identify the correlation between site pollutants, while SOM + K-means machine learning methods can further effectively extract complex hidden relationships in data and achieve in-depth mining of site monitoring data.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Cobre/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Zinc/análisis , Contaminación Ambiental/análisis , Suelo , Contaminantes Ambientales/análisis , Minería de Datos , Monitoreo del Ambiente/métodos , China , Medición de Riesgo
10.
J Hazard Mater ; 471: 134414, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678718

RESUMEN

Understanding chromium (Cr) migration and dispersion patterns in the soil-groundwater system is critical for the control and remediation of subsurface Cr contamination. In this study, a typical Cr-contaminated site from the Pearl River Delta (PRD) in China was simulated with a three-dimensional (3D) sandbox experiment to investigate the migration and transformation behavior of Cr. Results revealed that under the combined influence of rainfall and groundwater flow, a complex flow field favorable for 3D migration and solute dispersion was formed. The flow field characteristics were influenced by water-table depth, which in turn affected Cr behavior in the system. Moreover, downward flow field expansion under low water-table conditions led to Cr vertical migration range expansion, causing greater contamination in the deep soil. The migration process was accompanied with Cr(VI) reduction, during which approximately 75 % of the total Cr was immobilized in soils. The reactive transport model achieved a good fit for Cr retention and morphological distribution in the solid phase. The model indicates that Cr is more readily transported and dispersed with groundwater, and Cr migrated and spread downstream by 15 m during the eighth year. Therefore, managing water-table depth could be a strategy to minimize the Cr vertical migration and contamination.

11.
Chemosphere ; 357: 142040, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615949

RESUMEN

1,2,3-Trichloropropane (TCP) is an emerging groundwater pollutant, but there is a lack of reported studies on the abiotic natural attenuation of TCP by iron minerals. Furthermore, perturbation by O2 is common in the shallow subsurface by both natural and artificial processes. In this study, natural magnetite was selected as the reactive iron mineral to investigate its role in the degradation of TCP under O2 perturbation. The results indicated that the mineral structural Fe(II) on magnetite reacted with dissolved oxygen to generate O2-· and HO·. Both O2-· and HO· contributed to TCP degradation, with O2-· playing a more important role. After 56 days of reaction, 66.7% of TCP was completely dechlorinated. This study revealed that higher magnetite concentrations, smaller magnetite particle sizes, and lower initial TCP concentrations favored TCP degradation. The presence of <10 mg/L natural organic matter (NOM) did not affect TCP degradation. These findings significantly advance our understanding of the abiotic natural attenuation mechanisms facilitated by iron minerals under O2 perturbation, providing crucial insights for the study of natural attenuation.


Asunto(s)
Óxido Ferrosoférrico , Oxígeno , Propano , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Oxígeno/química , Óxido Ferrosoférrico/química , Propano/química , Propano/análogos & derivados , Agua Subterránea/química , Hierro/química , Biodegradación Ambiental
12.
Huan Jing Ke Xue ; 45(2): 1049-1057, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471942

RESUMEN

Risk assessment is a critical part of risk management for contaminated sites. However, in the specific management practice of As-contaminated sites, it is difficult to obtain realistic health risks for contaminated sites based on the total amount of pollutants and determined values of the model, thus preventing the control requirements of later remediation to be met. An increasing number of studies have recently been conducting risk assessments by considering bioavailability, modification parameters, and combined probabilistic models. To improve the accuracy of risk assessment results, taking a large As-contaminated site as a case, 432 sampling sites were set up and collected at different depths to analyze the level and distribution characteristics of As pollution, and probabilistic risk assessment was conducted with the modification of model parameters through literature research and Monte Carlo simulation. Then, the impact of traditional methods and probabilistic methods on health risk assessment was explored in comparison. The results indicated that ω(As) in the top soil of the study area ranged from 2.70-97.0 mg·kg-1, with a spatial variation coefficient of 0.61 and weaker spatial continuity. The carcinogenic risk and hazard index obtained by the traditional risk assessment method were 2.12E-4 and 8.36, respectively, which obviously overestimated the actual risk level and were not conductive to the refined management of As-contaminated sites. Combined with modification of model parameters and probabilistic risk assessment, the non-carcinogenic risk for adults and children was found to be at an acceptable level, and the carcinogenic risk was reduced by nearly an order of magnitude compared to that in the conventional method. Considering the relative biological effectiveness (RBA) of As, the 95% quantile of the total carcinogenic risk was 1.24E-5, a reduction of up to 36.41% compared to the uncorrected corresponding risk value of 1.95E-5. The carcinogenic risk of soil As for adults and children in the study area exceeded acceptable risk levels 1E-6, with oral ingestion of soil being the primary route of exposure. In addition, the results of the sensitivity analysis of the parameters showed that As concentration, daily oral ingestion rate of soils, and exposure duration of children had relatively larger effects for health risks. This work will provide a methodological and theoretical basis for achieving accurate risk assessment of As-contaminated sites and provide concepts for refined risk management.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Adulto , Niño , Humanos , Arsénico/análisis , Método de Montecarlo , Medición de Riesgo/métodos , Contaminación Ambiental/análisis , Suelo , Carcinógenos/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , China , Metales Pesados/análisis
13.
Sustainability ; 16(5): 1-19, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38510213

RESUMEN

The dynamics of an environmental decision-making context can be complicated. The use of decision support tools can help better facilitate restoring and maintaining ecosystems that provide environmental benefits (ecosystem services) to people. Although an ecosystem services assessment tool is designed for specific purposes, having access to a comprehensive suite of tools offers the user additional insight and resources to help in decision making. A range of approaches exist to connect ecosystem services to a given decision context ranging from less to more complex: using the best professional judgment; applying examples from other efforts; testing individual tool applications; and using a systematic, decision-tree approach to navigate among relevant tools and frameworks. The U.S. Environmental Protection Agency developed a decision-tree approach for a user to navigate the question of how to choose among a suite of ecosystem services assessment tools for three decision contexts: (1) ecological risk assessments; (2) cleanup of contaminated sites; (3) and generic structured decision-making processes. This tool selection navigator was developed with/for the intended user, including developing crosswalks between tool functionality and the user's language for what they require in a tool. To navigate the tool, the user first chooses one of three decision contexts. Second, the user selects among the different phases of the decision process. Third, the user selects among a few ecosystem-services related tasks relevant to the decision context chosen to identify potential tools. The tool uses simple language to navigate the decision pathways and provides the user with a suite of potential ES resources and tools for their given decision context.

14.
J Contam Hydrol ; 263: 104336, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38552336

RESUMEN

Globally there exist a very large number of contaminated or possibly contaminated sites where a basic preliminary assessment has not been completed. This is largely, among others, due to limited simple methods/models available for estimating key site quantities such as the maximum plume length, further denoted as Lmax and the corresponding time T=TLmax, at which the plume reaches its maximum extent L=Lmax. An approach to easily obtain an estimate of TLmax in particular is presented in this work. Limited availability of high-quality field data, particularly of TLmax, necessitates the use of synthetic data, which constrains the overall model development works. Taking BIOSCREEN-AT (transient 3D model) as a base model, this work proposes second-order polynomial models, with only two parameters, for estimating Lmax and TLmax. This reformulation of the well established solution significantly reduces data requirement and workload for initial site assessment purposes. A global sensitivity analysis (Morris, 1991), using a large number of random synthetic data, identifies the first-order decay rate constants in the plume λEFF and at the source γ as dominantly most influential for TLmax. For Lmax, the first-order decay rate constant λEFF and groundwater velocity v are the two important parameters. The sensitivity analysis also identifies that these parameters non-linearly impact TLmax or Lmax. With this information, the proposed polynomial models (each for Lmax and TLmax) were trained to obtain model coefficients, using a large amount of synthetic data. For verification, the developed models were tested using four datasets comprising over 100 sample sets against the results obtained from BIOSCREEN-AT and the developed BIOSCREEN-AT-based steady-state model. Additionally, the developed models were evaluated against two well documented field sites. The proposed models largely simplify estimation, particularly, of TLmax, for which only very limited field or literature information is available.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Modelos Teóricos , Agua Subterránea/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Movimientos del Agua
15.
Chemosphere ; 352: 141521, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395370

RESUMEN

Contamination by potentially toxic metals and metalloids (PTMs) has become a significant health and environmental issue worldwide. Sorption has emerged as one of the most prominent strategies for remediating both soil and water contamination. New sorbents are being developed to provide economically viable and environmentally sound alternatives, in alignment with the principles of the Sustainable Development Goals. This research aimed to assess the potential effects on human health and environmental toxicity following the sorption of cadmium (Cd), lead (Pb), and zinc (Zn) using peat, compost, and biochar as sorbents. The peat was collected in Brazil, a country with a tropical climate, while the compost and biochar were produced from the organic fraction of municipal solid waste (OFMSW). In terms of bioaccessibility, the results showed the following order: compost < biochar < peat for Pb, and compost < peat < biochar for Cd and Zn. There was a significant growth inhibition for Eruca sativa and Zea mays exposed to increasing concentrations of PTMs treated with peat and compost. The presence of contaminants played a decisive role on immobilization of neonates of Ceriodaphnia silvestrii after treatments with compost and, especially, peat. However, the biochar addition rate caused a significant influence on the outcomes of ecotoxicity across all tested species. Although the samples treated with biochar exhibited lower residual concentrations of PTMs than those treated with compost and peat, the inherent toxicity of biochar might be attributed to the material itself. The exposure to residual PTM concentrations post-desorption caused ecotoxic effects on tested species, emphasizing the need to assess PTM desorption potential. Peat, compost, and biochar are promising alternatives for the sorption of PTMs, but the addition rates must be properly adjusted to avoid the occurrence of undesirable ecotoxicological effects. This research offers valuable insights for sustainable environmental management and protection by thoroughly investigating the impacts of different sorbents and contaminants on aquatic and terrestrial ecosystems.


Asunto(s)
Compostaje , Metales Pesados , Contaminantes del Suelo , Humanos , Recién Nacido , Cadmio/toxicidad , Suelo , Plomo/toxicidad , Ecosistema , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Carbón Orgánico , Zinc/toxicidad , Metales Pesados/análisis
16.
Environ Sci Pollut Res Int ; 31(14): 21881-21893, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38400974

RESUMEN

The contamination of abandoned chromium slag-contaminated sites poses serious threats to human health and the environment. Therefore, improving the understanding of their distribution characteristics and health risks by multiple information is necessary. This study explored the distribution, accumulation characteristic, and the role in the migration process of chromium. The results showed that the contents of total Cr and Cr (VI) ranged from 12.00 to 7400.00 mg/kg, and 0.25 to 2160.00 mg/kg, respectively. The average contents of both total Cr and Cr (VI) reached the highest value at the depth of 7-9 m, where the silt layer retaining total Cr and Cr (VI) was. The spatial distribution analysis revealed that the total contamination area percentages of total Cr and Cr (VI) reached 7.87% and 90.02% in the mixed fill layer, and reduced to 1.21% and 34.53% in the silty layer, and the same heavily polluted areas were located in the open chromium residue storage. Soil pH and moisture content were the major factors controlling the migration of total Cr and Cr(VI) in soils. Results of probabilistic health risk assessment revealed that carcinogenic risk was negligible for adults and children, and the sensitive analysis implied that the content of Cr(VI) was the predominant contributor to carcinogenic risk. The combination of chemical reduction and microbial remediation could be the feasible remediation strategy for soil Cr(VI) pollution. Overall, this study provides scientific information into the chromium post-remediation and pollution management for various similar chromium-contaminated sites.


Asunto(s)
Contaminantes del Suelo , Humanos , Niño , Adulto , Contaminantes del Suelo/análisis , Cromo/análisis , Suelo , China
17.
Sci Total Environ ; 917: 170407, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296073

RESUMEN

The safety of underground drinking water has received widespread attention. However, few studies have focused on the occurrence and health risks of pollutants in underground drinking water of coking contaminated sites. In this study, the distribution characteristics, sources, and human health risks of benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) in underground drinking water from a typical coking contaminated site in Shanxi of China were investigated. The average concentrations of BTX and PAHs in coking plant (CP) were 5.1 and 4.8 times higher than those in residential area (RA), respectively. Toluene and Benzene were the main BTX, while Acenaphthene, Fluorene, and Pyrene were the main PAHs. Concentrations of BTX/PAHs were negatively correlated with altitude, revealing altitude might be an important geological factor influencing spatial distribution of BTX/PAHs. PMF model demonstrated that the BTX/PAHs pollution in RA mainly originated from coking industrial activities. Health risk assessments were conducted by a modified US EPA-based model, in which environmental concentrations were replaced by residual concentrations after boiling. Residual ratios of different BTX/PAHs were determined by boiling experiments to be 9.4-93.8 %. The average total carcinogenic risks after boiling were decreased from 2.6 × 10-6 to 1.4 × 10-6 for adults, and from 4.3 × 10-6 to 2.1 × 10-6 for children, suggesting boiling was an effective strategy to reduce the carcinogenic risks from BTX/PAHs, especially for ingestion pathway. Monte Carlo simulation results matched well with the calculated results, suggesting the uncertainty was acceptable and the risk assessment results were reliable. This study provided useful information for revealing the spatial distribution of BTX/PAHs in underground drinking water of coking contaminated sites, understanding their linkage with altitude, and also helped to more accurately evaluate the health risks by using the newly established boiling-modified models.


Asunto(s)
Coque , Agua Potable , Hidrocarburos Policíclicos Aromáticos , Adulto , Niño , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Benceno , Xilenos , Tolueno , Monitoreo del Ambiente , Altitud , China , Medición de Riesgo
18.
Environ Sci Pollut Res Int ; 30(57): 121182-121195, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37952068

RESUMEN

Odor emission from the soil of pesticide-contaminated sites is a prominent environmental problem in China, but there are very few researches about the component and spatial distribution of odorous substances in the soil of contaminated sites. In this paper, to investigate the odor pollution condition of an organophosphorus pesticide production site in a city of South China, the odor pollutants in the soil and soil gas were analyzed and the key odor-contributing substances were identified. Besides, the correlation between the concentrations of odorous substances in soil and soil gas was analyzed, and the measured results were compared with the predicted results by the linear model and DED model. An off-line soil gas sampling device was designed to collect the gas emitted from soil because the groundwater level in the site was too shallow to build a soil gas well. The key odor substances were screened from the detection results of soil gas via odor activity value (OAV) analysis, which revealed that the key odorous substances included benzene, ethylbenzene, ammonia, toluene, m,p-xylene, methyl sulfide, dimethyl disulfide, and formaldehyde. Furthermore, the spatial distribution of the odor substances in the soil of the pesticide-contaminated site was closely related to the layout and geologic structure of the site. The odor pollutants in soil were mainly distributed near the phosmet production workshop and the drainage ditch network. As for the deep distribution, the odorous substances were mainly enriched in the silty clay or clay layer (5.6-11 m), followed by the sludge layer (1-3.6 m). Finally, the predicted model (linear model and DED model) analysis suggested that the linear model was more suitable for predicting the concentration of odorous substances in the soil gas with the detection data of soil in this pesticide-contaminated site.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Agua Subterránea , Plaguicidas , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Suelo , Odorantes/análisis , Arcilla , Compuestos Organofosforados/análisis , Contaminantes Ambientales/análisis , Agua Subterránea/análisis
19.
Front Plant Sci ; 14: 1260431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900738

RESUMEN

Mercury (Hg) is a global environmental concern due to its toxicity (especially high in methylated form) and the long-range distribution of its gaseous elemental form (GEM). Hg-contaminated areas, such as abandoned mining sites, pose intrinsic difficulties for their management and heavy monitoring costs. In these environments, plant-based solutions may play a key role in the ecosystem quality assessment and support remediation strategies, combining reliability and cost-effectiveness. In this study, we adopted a biomonitoring approach by using tree rings of four different species collected in the proximity of the mining-metallurgical area of Abbadia San Salvatore, central Italy, a major former Hg mining district whose reclamation is currently in progress. Our dendrochemical analysis was aimed at identifying the historical changes of local atmospheric Hg contamination and at singling out, for the first time in the study area, other potentially toxic elements (PTEs) associated with the past mining activity. Collected cores dated back to early as 1940 and provided the temporal patterns of atmospheric Hg emission vs the produced liquid quantities, so reconstructing the historical impact of the mining site on nearby terrestrial ecosystems and resident human population. Current GEM contamination was found about twenty times lower than that of the fully operational mine periods. From a first survey on other PTEs, thallium (Tl) and lead (Pb) appeared to be potentially associated with the mining activity, thus suggesting new working assumptions for further dendrochemical analyses and for the inclusion of Pb in human biomonitoring surveys of the Mt. Amiata area, actually not present in the control list. The results prompt a more thorough assessment by tracking for a longer time span a critical site that is an ideal open-field lab to study the ecophysiology of different tree species in relation to environmental behavior of PTEs for better-assessing wildlife and human exposures.

20.
Ecotoxicol Environ Saf ; 266: 115589, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37839191

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) pollution in soil is a pervasive environmental issue worldwide. Although biochar has the potential to immobilize PAHs in soils, there remains a study gap in the use of systematic analyses to assess the effectiveness of biochar for PAH removal and the factors that affect biochar. Hence, a meta-analysis utilizing 56 published studies was aimed to assess the impact of biochar on the PAH content, soil physicochemical properties, and microbial diversity in PAH-contaminated soils and to elucidate what factors impact the capability of biochar to alter PAH persistence. With biochar application, soil Ctot PAH concentrations were significantly reduced (15.4%), while the levels of Cfree PAHs and Cbioacc PAHs were reduced by 55.6% and 46.5%, respectively. Additionally, biochar improved the physicochemical properties of PAH-contaminated soil and increased the diversity of microorganisms. Particularly, the relative abundance of PAH degraders increased significantly (43.7%), which indicated that PAH biodegradation was significantly enhanced. Soil physicochemical properties and biochar production conditions are indispensable for the study of the PAH persistence. The overall findings revealed that the pyrolysis of woody biochar at 300-500 °C was beneficial for reducing the PAH persistence in acidic, coarse, or fine and high soil organic matter content (>20 g/kg) soils.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Biodegradación Ambiental , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA