RESUMEN
This study investigates the presence of potentially toxic elements (PTEs) in lettuce (Lactuca sativa L.) grown in urban gardens in a highly industrialized city in Brazil and evaluates the effectiveness of different washing methods in reducing contamination. Ten elements (arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn)) were analyzed for their concentration, and a health risk assessment was performed. The results showed that Pb concentrations in lettuce from gardens near the Capuava Petrochemical Complex reached 0.77 mg kg-1, exceeding both national and international safety limits. The most effective washing procedure involved the use of sodium hypochlorite, which reduced As by 46%, Pb by 48%, and V by 52%. However, elements such as Ba, Cd, Cr, and Ni showed limited reductions of less than 10% across all washing methods. Health risk assessments revealed a particular concern for children, with the total cancer risk (TCR) exceeding acceptable limits in some gardens. Isotopic analysis of Pb revealed that atmospheric pollution from gasoline emissions and industrial activities were the primary sources of contamination. The elevated levels of Pb, Cr, and As highlight the need for targeted health education in local communities, especially regarding the importance of proper washing techniques. Risk management strategies, including improved contamination control and public awareness, are crucial to minimize exposure to these harmful elements, particularly in vulnerable populations like children.
RESUMEN
Nanomaterials, due to their large surface area and selectivity, have stood out as an alternative for the adsorption of contaminants from water and effluents. Synthesized from green or traditional protocols, the main advantages and disadvantages of green nanomaterials are the elimination of the use of toxic chemicals and difficulty of reproducing the preparation of nanomaterials, respectively, while traditional nanomaterials have the main advantage of being able to prepare nanomaterials with well-defined morphological properties and the disadvantage of using potentially toxic chemicals. Thus, based on the particularities of green and conventional nanomaterials, this review aims to fill a gap in the literature on the comparison of the synthesis, morphology, and application of these nanomaterials in the adsorption of contaminants in water. Focusing on the adsorption of heavy metals, pesticides, pharmaceuticals, dyes, polyaromatic hydrocarbons, and phenol derivatives in water, for the first time, a review article explored and compared how chemical and morphological changes in nanoadsorbents synthesized by green and conventional protocols affect performance in the adsorption of contaminants in water. Despite advances in the area, there is still a lack of review articles on the topic.
Asunto(s)
Metales Pesados , Nanoestructuras , Contaminantes Químicos del Agua , Purificación del Agua , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Adsorción , AguaRESUMEN
The detection of emerging contaminants in bodies of water has steadily increased in recent years, becoming a severe problem threatening human and ecosystem health. Developing new materials with adsorption properties to remove these pollutants represents an important step toward a potential solution. In this paper, a polybutylene adipate terephthalate (PBAT) nanofibrous membrane incorporating clinoptilolite zeolite was developed and its excellent performance in removing tetracycline (TC) and methylene blue (MB) from water was demonstrated. The composite membrane was prepared in two steps: firstly, a homogeneous dispersion of clinoptilolite (1 wt% respect to polymer) in a PBAT solution (12.6 wt%) was electrospun; secondly, the electrospun membrane was subjected to an acid treatment that improved its wettability through the protonation of the surface silanol groups of clinoptilolite. The resulting membrane was hydrophilic and showed higher adsorption for TC (800 mg/g) and MB (100 mg/g), using a low dose (90 mg/L) powdered zeolite. The maximum removal capacity was obtained at neutral pH, being the cation exchange reaction the main adsorption mechanism. Pseudo-second-order kinetics and Henry's law agree well with the proposed chemisorption and the high affinity of TC and MB for the adsorbent. The material can be reused after the removal process without generating additional contamination, although losing some effectivity.
Asunto(s)
Contaminantes Químicos del Agua , Zeolitas , Humanos , Zeolitas/química , Azul de Metileno/química , Adsorción , Ecosistema , Contaminantes Químicos del Agua/química , Antibacterianos , Tetraciclina , Agua/química , Concentración de Iones de Hidrógeno , Cinética , AdipatosRESUMEN
This paper proposes a greener approach to the intensification of base oil recovery for truck engines (32,500 km of use) using ethanol, propan-2-ol, 2-methylpropan-1-ol, and butan-1-ol as solvents for the extraction of base oil, combining mechanical stirring (220 rpm) and ultrasound (25 °C, 24 kHz, and 400 W). The results indicated that the recovery yields of the base oil, using the mechanical stirring and ultrasound (MS-US) system, for ethanol, propan-2-ol, 2-methylpropan-1-ol, and butan-1-ol were approximately 3.1, 25.6, 71.6, and 85.5%, respectively. By contrast, the recovery yields using only mechanical stirring were 8.8, 28.9, 58.9, and 76.1%, respectively. The system with pre-extraction could effectively remove Ca (85.3-93.0%), Mg (67.2-82.9%), Na (31.7-62.5%), and Zn (0.0-71.7%). Finally, the results showed a reduction of almost 100% for the concentrations of Al, Cr, Fe, and Mo in the pre-extraction system. The mechanical stirring (5 min) and ultrasound (5 min) system were able to intensify the extraction process using environmentally friendly solvents.
Asunto(s)
Etanol , Lubricantes , SolventesRESUMEN
Thermoplastic starch (TPS) is a widely studied biopolymer as an alternative to the use of conventional polymers. In this sense, the incorporation of fillers or reinforcements coming preferably from other substances of natural origin, can be an alternative to try to improve some mechanical and thermal properties of starch polymers. Thus, Kraft Lignin (KL), can be an excellent filler to be incorporated, since it presents mechanical and thermal properties and reduces the cost and weight of the final compounds. TPS films were prepared by casting using dimethyl sulfoxide (DMSO) as solvent and additives with 2, 4 and 8% KL. Characterization of TPS films and compositions with KL were carried out by Fourier-Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA), Dynamic Thermomechanical Analysis (DMTA), tensile testing and contact angle. Samples were also analyzed for biodegradation and for the ability to remove contaminants in water, Metil Orange (MO), by Ultraviolet-Visible Spectroscopy (UV-Vis). The FT-IR spectra of the films showed bands typical of functional groups derived from starch and lignin, with the intensity of these bands varying among the samples studied. Micrographs revealed slightly different morphologies among the films, but all showed irregular shapes with structures that appeared as plots. Increasing the percentage of KL led to an increase in contact angle values, showing a more hydrophobic behavior. In the TGA analysis, it was possible to observe a change in the main degradation event of the films for lower temperatures, especially of TPS - 4 and 8% KL compared to the TPS film. Films with KL had the peak of maximum degradation shifted to temperatures below the starch film, where the decrease in intensity of the main peak in the TPS - 4% KL and TPS - 8% KL samples demonstrates that there was less mass loss in the event. There was also in the percentage of residue as the addition of KL was increased The DMTA analyses allowed for the conclusion that presence of KL in TPS film allowed for an increase in its energy storage property, and that the loss modulus followed a decreasing order of storage modulus values to TPS - 8% KL from TPS. For the tensile strength property only TPS - 4% KL has significant improvement, and the elongation at break showed an increase for TPS - 4 and 8% KL compared to TPS. Samples showed a continuous and progressive biodegradation process, being completely biodegraded within 10 days. The monitoring of the ability to remove contaminants from water by UV-Vis, also showed promising results of compounds for this application. The best results were obtained, in most tests, for the TPS- 4% KL films.
Asunto(s)
Lignina/química , Almidón/química , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Termogravimetría , Agua/química , Difracción de Rayos XRESUMEN
Objective. In this study the biomass of the yeast Saccharomyces cerevisiae was used to remove lead, mercury and nickel in the form of ions dissolved in water. Materials and methods. Synthetic solutions were prepared containing the three heavy metals, which were put in contact with viable microorganisms at different conditions of pH, temperature, aeration and agitation. Results. Both individual variables and the interaction effects influenced the biosorption process. Throughout the experimental framework it was observed that the biomass of Saccharomyces cerevisiae removed a higher percentage of lead (86.4%) as compared to mercury and nickel (69.7 and 47.8% respectively). When the pH was set at a value of 5 the effect was positive for all three metals. Conclusions. pH was the variable that had a greater influence on the biosorption of lead on the biomass of Saccharomyces cerevisiae. The affinity of the heavy metals for the biomass followed the order Pb>Hg>Ni.
Objetivos. En este estudio se utilizó la biomasa de la levadura Saccharomyces cerevisiae para retener plomo, mercurio y níquel en forma de iones disueltos en agua. Materiales y métodos. Se prepararon soluciones sintéticas que contenían los tres metales pesados, las cuales se pusieron en contacto con el microorganismo en forma viable a diferentes condiciones de pH, temperatura, aireación y agitación. Resultados. Tanto las variables individuales como los efectos de interacción influyeron sobre el proceso de biosorción. A través de todos los experimentos, se observó que la biomasa de Saccharomyces cerevisiae eliminó un mayor porcentaje de plomo (86.4%) en comparación al mercurio y al níquel (69.7 y 47.8% respectivamente). Cuando el pH se fijó en valor de 5, el efecto fue positivo para los tres metales. Conclusiones. El pH fue la variable que tuvo una mayor influencia en la biosorción de plomo sobre la biomasa de Saccharomyces cerevisiae. La afinidad de los metales pesados por la biomasa siguió el orden Pb>Hg>Ni.