Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
1.
J Environ Manage ; 370: 122377, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243655

RESUMEN

Hydraulic conditions exert a comprehensive and vital influence on constructed wetlands (CWs). However, research on this subject is relatively limited. Hydraulic parameters can be categorized into design and operational parameters based on their properties. The design parameters are represented by the hydraulic gradient, substrate porosity, and aspect ratio, while operational parameters are represented by the hydraulic retention time, hydraulic loading rate, and water depth. These parameters directly or indirectly affect the operational lifespan and pollutant removal performance of CWs. Currently, the primary measures for optimizing the hydraulic conditions of CWs involve hydraulic structure and numerical simulation optimization methods. In this review, we aimed to elucidate the impact of hydraulic conditions on CW performance and summarize current optimization strategies. By highlighting the significance of hydraulic parameters in enhancing pollutant removal and extending operational lifespan, this review provides valuable insights for improving CW design and management. The findings will be useful for researchers and practitioners seeking to optimize CW systems and advance the application of nature-based solutions for wastewater treatment.

2.
Environ Pollut ; : 124947, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278559

RESUMEN

Sulfamethoxazole is a widely used antibiotic frequently found as an environmental pollutant. It can alter microbial communities and increase antibiotic resistance, becoming a public health risk. Constructed wetlands have the potential for removing sulfamethoxazole from polluted waters, but the role of different macrophytes in this process is not well understood. We investigated the fate of sulfamethoxazole and its effect on bacterial communities in microcosms containing Schoenoplectus californicus, an altitude-tolerant macrophyte. Within the first ten hours after introducing sulfamethoxazole (initial concentration 5 mg/L) to the microcosms, the concentration in the liquid phase significantly differed between microcosms with and without S. californicus. However, over the long term (15 and 30 days post-addition), the removal percentage (around 75%) in the liquid phase was not significantly influenced by S. californicus, indicating that sediments might be primarily responsible for removing the antibiotic. The presence of S. californicus promoted algae growth in the microcosms, and we determined that algae contributed to sulfamethoxazole removal from the liquid phase, likely through adsorption. Additionally, we characterized bacterial communities in the microcosm sediments via nanopore sequencing to identify changes following sulfamethoxazole addition. The relative abundance of Proteobacteria increased from 37-46% to 48-99% with the addition of the antibiotic. Conversely, the relative abundance of cyanobacteria decreased significantly after sulfamethoxazole was added (from 17-35% to less than 2%), suggesting it may serve as a biological marker for sulfamethoxazole pollution. In addition, the functional profile of the community was estimated from taxonomic diversity using PICRUST.

3.
J Environ Manage ; 369: 122353, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222590

RESUMEN

Several previous studies concerned of microbial fuel cells integrated into constructed wetlands, nevertheless, their application as a convenient treatment for wastewater is still developing. In this experimental investigation, five CW-MFC systems were similarly designed, setup, and operated in a batch mode for two subsequent cycles. Each cycle lasted for 10 days to evaluate the performance of CW-MFC system for the remediation of real leather tannery wastewater (LTW). Four CW-MFCs were planted, each with different type of vegetation including Conocarpus, Arundo donax, Canna lily, and Cyperus papyrus in CW1-MFC, CW2-MFC, CW3-MFC, and CW4-MFC, respectively. The fifth CW5-MFC was maintained unplanted and considered as the control system. The performance of each CW-MFCs systems was evaluated mainly based on the removal of organic content (COD), total dissolved solid (TDS) elimination, and power generation. The results demonstrated that the four types of plants maintained healthy and no sign of wilting was observed during the 20 days of monitoring. For the first cycle of batch operation, maximum removal efficiencies of COD were 99.8%, 99.5%, 99.7%, 99.6% and 99.5% with power outputs of 10,502.8, 10,254.6, 9956.4, 10,029.6, and 9888.0 mW/m3, while, maximum TDS elimination were 46.7%, 39.7%, 60.8%, 55.5%, and 13.8% observed in CW1-MFC, CW2-MFC, CW3-MFC, CW4-MFC, and CW5-MFC, respectively. Very comparable results were observed in the second operation cycle. Results of phototoxicity test indicated that the germination of Hordeum vulgare and Triticum aestivum were 100% watered with treated effluent compared to 90% accomplished with tap water as the control solution for both types of seeds.


Asunto(s)
Fuentes de Energía Bioeléctrica , Curtiembre , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo
4.
J Environ Manage ; 369: 122392, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232330

RESUMEN

Treatment Wetlands (TWs) are widely used for the treatment of domestic wastewater, with an increasing emphasis on provision of multiple co-benefits. However, concerns remain regarding achieving stringent phosphorus (P) discharge limits, system robustness and resilience, and associated guidance on system design and operation. Typically, where P removal is intended with a passive TW, surface flow (SF) systems are the chosen design type. This study analysed long-term monitoring datasets (2-30 years) from 85 full-scale SF TWs (25 m2 to 487 ha) treating domestic sewage with the influent load ranging from 2.17 to 54,779 m3/d, including secondary treatment, tertiary treatment, and combined sewer overflows treatment. The results showed median percentage removals of total P (TP) and orthophosphate (Ortho P) of 28% and 31%, respectively. Additionally, median areal mass removal rates were 5.13 and 2.87 gP/m2/yr, respectively. For tertiary SF TWs without targeted upstream P removal, 80% of the 44 systems achieved ≤3 mg/L annual average effluent total P. Tertiary SF TWs with targeted upstream P removal demonstrated high robustness, delivering stable effluent TP < 0.35 mg/L. Seasonality in removal achieved was absent from 85% of sites, with 95% of all systems demonstrating stable annual average effluent TP concentrations for up to a 30-year period. Only two out of 32 systems showed a significant increase in effluent TP concentration after the initial year and remained stable thereafter. The impact of different liner types on water infiltration, cost, and carbon footprint were analysed to quantify the impact of these commonly cited barriers to implementation of SF TW for P removal. The use of PVC enclosed between geotextile gave the lowest additional cost and carbon footprint associated with lining SF TWs. Whilst the P-k-C* model is considered the best practice for sizing SF TWs to achieve design pollutant reductions, it should be used with caution with further studies needed to more comprehensively understand the key design parameters and relationships that determine P removal performance in order to reliably predict effluent quality.


Asunto(s)
Fósforo , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Fósforo/análisis , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis
5.
Environ Res ; : 120005, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288827

RESUMEN

The simulated coastal constructed wetlands supplemented with Fe0 and phragmites australis (P.A) biomass (CW-M) were constructed to improve nitrogen removal under different salinities (0-15‰). Results showed that the denitrification performance of CW-M were improved significantly, with the higher NO3--N removal of 72-94% and lower N2O emission flux, when compared with mono-P.A biomass(CW-bio), mono-Fe0 system (CW-Fe) and control system. The nitrogen removal showed a trend of first increasing (0‰-7‰) and then decreasing (7‰-15‰) with the highest NO3--N removal of 94% and enhanced removal efficiency of 41% in CW-M. Fe0 and P.A biomass coupling could reduce the stress of salinity on denitrification. Batch experiments have demonstrated that Fe0 and P.A biomass could mutually stimulate more total organic carbon and total iron (TFe) release as electron donors for denitrification. Meanwhile, appropriate salinity could also promote the release of TFe. The typical heterotrophic denitrifying genera Bacillus and iron autotrophic denitrifying genera Thermomonas have the highest proportion in CW-M, with 21.83% and 0.10%, respectively. Fe0 and P.A biomass adding simultaneously promoted the carbon and iron metabolism, further enhancing the nitrogen metabolism process. The joint enhancement of autotrophic and heterotrophic denitrification contributes to NO3--N removal in CW-M for treating saline, low C/N wastewater in coastal wetlands.

6.
Front Microbiol ; 15: 1421094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101038

RESUMEN

Traditionally constructed wetlands face significant limitations in treating tailwater from wastewater treatment plants, especially those associated with sugar mills. However, the advent of novel modified surface flow constructed wetlands offer a promising solution. This study aimed to assess the microbial community composition and compare the efficiencies of contaminant removal across different treatment wetlands: CW1 (Brick rubble, lignite, and Lemna minor L.), CW2 (Brick rubble and lignite), and CW3 (Lemna minor L.). The study also examined the impact of substrate and vegetation on the wetland systems. For a hydraulic retention time of 7 days, CW1 successfully removed more pollutants than CW2 and CW3. CW1 demonstrated removal rates of 72.19% for biochemical oxygen demand (BOD), 74.82% for chemical oxygen demand (COD), 79.62% for NH4 +-N, 77.84% for NO3 --N, 87.73% for ortho phosphorous (OP), 78% for total dissolved solids (TDS), 74.1% for total nitrogen (TN), 81.07% for total phosphorous (TP), and 72.90% for total suspended solids (TSS). Furthermore, high-throughput sequencing analysis of the 16S rRNA gene revealed that CW1 exhibited elevated Chao1, Shannon, and Simpson indices, with values of 1324.46, 8.8172, and 0.9941, respectively. The most common bacterial species in the wetland system were Proteobacteria, Spirochaetota, Bacteroidota, Desulfobacterota, and Chloroflexi. The denitrifying bacterial class Rhodobacteriaceae also had the highest content ratio within the wetland system. These results confirm that CW1 significantly improves the performance of water filtration. Therefore, this research provides valuable insights for wastewater treatment facilities aiming to incorporate surface flow-constructed wetland tailwater enhancement initiatives.

7.
Chemosphere ; 364: 143148, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39168387

RESUMEN

Azo dye degradation can be achieved by simulating a series of anaerobic and aerobic conditions within the constructed wetland (CW) system. The current investigation evaluated the effectiveness of a baffled horizontal-vertical CW system, planted with Typha angustifolia, simulating anaerobic-aerobic conditions to treat carbon-deficient synthetic dyeing wastewater containing 100 mg/L Reactive Yellow 145 (RY145) azo dye. In the absence of an available carbon source in dyeing wastewater, an optimum quantity of sodium acetate was supplemented as the substrate for microbial degradation of RY145. Influent dyeing wastewater characteristics were 5555 ADMI colour, 461 mg/L chemical oxygen demand (COD) and 39 mg/L total nitrogen (TN). During the operation period, the CW system achieved 97% colour, 87% COD, 95% ammonium nitrogen (NH4+-N) and 71% TN removals at 4 d hydraulic retention time (HRT). Favourable environmental conditions, such as low redox conditions and substrate availability in horizontal CW, contributed to a significant reduction in colour (96%). Most TN reduction (67%) happened in horizontal CW by denitrification and plant assimilation. The metagenomic study revealed that Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes were responsible for pollutant degradation within horizontal CW. The UV-visible spectra and high-resolution liquid chromatograph mass spectrometer (HR-LCMS) analysis confirmed that dye degradation intermediates generated from the breakage of azo bonds were eliminated in vertical CW with high redox conditions. The results of the phytotoxicity and fish toxicity experiments demonstrated a substantial toxicity reduction in the CW system-treated effluent.

8.
Biology (Basel) ; 13(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39194531

RESUMEN

Urban lakes commonly suffer from nutrient over-enrichment, resulting in water quality deterioration and eutrophication. Constructed wetlands are widely employed for ecological restoration in such lakes but their efficacy in water purification noticeably fluctuates with the seasons. This study takes the constructed wetland of Jinshan Lake as an example. By analyzing the water quality parameters at three depths during both summer and winter, this study explores the influence of the constructed wetland on the water quality of each layer during different seasons and elucidates the potential mechanisms underlying these seasonal effects. The results indicate that the constructed wetland significantly enhances total nitrogen (TN) concentration during summer and exhibits the capacity for nitrate-nitrogen removal in winter. However, its efficacy in removing total phosphorus (TP) is limited, and may even serve as a potential phosphorus (P) source for the lake during winter. Water quality test results of different samples indicated they belong to Class III or IV. Restrictive factors varied across seasons: nitrate-nitrogen and BOD5 jointly affected water quality in winter, whereas TP predominantly constrained water quality in summer. These results could provide a reference for water quality monitoring and management strategies of constructed wetlands in different seasons in Jiangsu Province.

9.
Environ Sci Pollut Res Int ; 31(38): 50398-50410, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39093390

RESUMEN

This study comparatively evaluated effluent reuse from two TWs-a horizontal subsurface flow (HF) and a vertical subsurface flow (VF)-used for rural wastewater treatment in Central Chile during the initial operation stage. The two TWs were planted with Zantedeschia aethiopica and were operated for 10 months at a pilot scale. The water quality of the influent and effluents was measured and compared with reuse regulations. The results showed similarities in the behavior of the effluents from the two TWs, presenting differences only in the chemical oxygen demand (COD) and different forms of nitrogen, suggesting the necessity of complementary treatment stages or modifications to the operation. The effluents from the HF better fulfilled the reuse standards for irrigation, as the VF faced problems associated with its size. However, a complementary disinfection system is necessary to improve pathogen removal in the effluents coming from the two TWs, especially to be reused as irrigation water for crops. Finally, this work showed the potential for applying subsurface TWs for wastewater treatment in rural areas and reusing their effluents as irrigation water, practice that can contribute to reducing the pressure on water resources in Chile, and that can be used as an example for other countries facing similar problems.


Asunto(s)
Agricultura , Eliminación de Residuos Líquidos , Aguas Residuales , Purificación del Agua , Humedales , Chile , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Calidad del Agua
10.
Environ Sci Pollut Res Int ; 31(38): 50056-50075, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102132

RESUMEN

The constructed wetland coupled with a microbial fuel cell (CW-MFC) is a wastewater treatment process that combines contaminant removal with electricity production, making it an environmentally friendly option. This hybrid system primarily relies on anaerobic bioprocesses for wastewater treatment, although other processes such as aerobic bioprocesses, plant uptake, and chemical oxidation also contribute to the removal of organic matter and nutrients. CW-MFCs have been successfully used to treat various types of wastewater, including urban, pharmaceutical, paper and pulp industry, metal-contaminated, and swine wastewater. In CW-MFC, macrophytes such as rice plants, Spartina angalica, Canna indica, and Phragmites australis are used. The treatment process can achieve a chemical oxygen demand removal rate of between 80 and 100%. Initially, research focused on enhancing power generation from CW-MFC, but recent studies have shifted towards resource recovery from wastewater. This review paper provides an overview of the development of constructed wetland microbial fuel cell technology, from its early stages to its current applications. The paper also highlights research gaps and potential directions for future research.


Asunto(s)
Fuentes de Energía Bioeléctrica , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Electricidad , Purificación del Agua/métodos
11.
Water Sci Technol ; 90(3): 758-776, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141033

RESUMEN

This article presents the authors' perspectives on modelling best practices for nature-based solutions (NBS). The authors led a workshop on NBS modelling as part of the 8th IWA Water Resource Recovery Modelling Seminar (WRRmod2022+) in January 2023, where the discussion centred around the design, use cases, and potential applications of NBS models. Four real-world case studies, encompassing an aerated lagoon, a biofilm-enhanced aerated lagoon, a stormwater basin, and a constructed wetland were reviewed to demonstrate practical applications and challenges in modelling NBS systems. The initial proposed modelling framework was derived from these case studies and encompassed eight sub-models used for these NBS types. The framework was subsequently extended to include eight additional NBS categories, requiring a total of 10 sub-models. In a subsequent step, with a different perspective, the framework was refined to focus on 13 primary use cases of NBS, identifying 10 sub-models needed or potentially required for these specific NBS applications. These frameworks help to identify the necessary sub-models for the NBS system at hand or the use case. This article also discusses the benefits and challenges of applying water resource recovery modelling best practices to NBS, along with recommendations for future research in this area.


Asunto(s)
Modelos Teóricos , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
12.
Environ Sci Pollut Res Int ; 31(39): 51551-51567, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112902

RESUMEN

Sludge treatment reed bed planted (STRB) with Phragmites australis (P.australis) and Arundo donax (A.donax) was assessed in the presence of Eisenia fetida under control condition during the dry season. Worm-planted units were fed with mixed sewage sludge (dry and volatile solids of 29.44 g DS.L-1 and 24.23 g VS.L-1). Sludge loading rates (SLR) of 50, 60, and 70 kg DS m-2 year-1 were examined to assess dewatering efficiency. Surface layers in units with P.australis and A.donax achieved DS of 80 and 81% at a loading rate of 50 kg DS m-2 year-1, while their subsurface DS were 41 and 25%, respectively. Units with A.donax experienced plant loss when subjected to SLR exceeding 60 kg DS m-2 year-1. More than 10 cm of residual sludge accumulated on the top of units after a 2-month final rest. Evapotranspiration was greater in the unit with P.australis (5.23 mm day-1) compared to the unit with A.donax (4.24 mm day-1) while both were fed with 70 kg DS m-2 year-1. Water loss contributions from residual sludge layer, drained water, and evapotranspiration were 3, 46, and 51%, respectively. Units with P.australis indicated 20% higher water loss compared to units with A.donax. Although the drained water quality improved over time, it did not meet standard limits. The residual sludge layer contained macro and micronutrients, and heavy metals with a significant elemental order of N > Ca > P > S > mg > K (N:P:K = 31:8:1), Fe > Na > B > Mn > Mo and Zn > Cr > Cu > Pb > Ni > Cd. Overall, STRB could be a sustainable alternative technology to conventional sewage sludge management techniques.


Asunto(s)
Poaceae , Aguas del Alcantarillado , Animales , Región Mediterránea , Oligoquetos , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental
13.
Sci Total Environ ; 952: 175864, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39216754

RESUMEN

Combined sewer overflows (CSOs) release a significant amount of pollutants, including microplastics (MPs), due to the discharge of untreated water into receiving water bodies. Constructed Wetlands (CWs) offer a promising strategy for CSO treatment and have recently attracted attention as a potential solution for MP mitigation. Nevertheless, limited research on MP dynamics within CSO events and MP removal performance in full-scale CW systems poses a barrier to this frontier of application. This research aims to address both these knowledge gaps, representing the first investigation of a multi-stage CSO-CW for MP removal. The study presents one year of seasonal data from the CSO-CW upstream of the WWTP in Carimate (Italy), evaluating the correlation of MP abundance with different water quality/quantity parameters and associated ecological risks. The results show a clear trend in MP abundance, which increases with rainfall intensity. The strong correlation between MP concentration, flow rate, and total suspended solids (TSS) validates the first flush phenomenon hypothesis and its impact on MP release during CSOs. Chemical characterization identifies acrylonitrile-butadiene-styrene (ABS), polyethylene (PE), and polypropylene (PP) as predominant polymers. The first vertical subsurface flow (VF) stage showed removal rates ranging from 40 % to 77 %. However, the unexpected increase in MP concentrations after the second free water surface (FWS) stage suggests the stochasticity of CSO events and the different hydraulic characteristics of the CW units have diverse effects on MP retention. These data confirm filtration as the main retention mechanism for MP within CW systems. The MP ecological risk assessment indicates a high-risk category for most of the water samples, mainly related to the frequent presence of ABS fragments. The results contribute to the current understanding of MPs released by CSOs and provide insights into the performance of different treatment units within a large-scale CSO-CW system, suggesting the requirement for further attention.

14.
J Hazard Mater ; 476: 135139, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981230

RESUMEN

Neonicotinoids pose significant environmental risks due to their widespread use, persistence, and challenges in elimination. This study explores the effectiveness of Fe/Mn biochar in enhancing the removal efficiency of neonicotinoids in recirculating constructed wetlands (RCWs). Results demonstrated that incorporating Fe/Mn biochar into RCWs significantly improved the removal of COD, NH4+-N, TN, TP, imidacloprid (IMI), and acetamiprid (ACE). However, the simultaneous presence of IMI and ACE in the RCWs hindered the elimination of NH4+-N, TN, and TP from wastewater. The enhanced removal of nutrients and pollutants by Fe/Mn biochar was attributed to its promotion of carbon, nitrogen, and phosphorus cycling in RCWs, along with its facilitation of the adsorption and biodegradation of IMI and ACE. Metagenomics analysis demonstrated that Fe/Mn biochar altered the structure and diversity of microbial communities in RCWs. A total of 17 biodegradation genes (BDGs) and two pesticide degradation genes (PDGs) were identified within RCWs, with Fe/Mn biochar significantly increasing the abundance of BDGs such as cytochrome P450. The potential host genera for these BDGs/PDGs were identified as Betaproteobacteria, Acidobacteria, Nitrospiraceae, Gemmatimonadetes, and Bacillus. This study offers valuable insights into how Fe/Mn biochar enhances pesticide removal and its potential application in constructed wetland systems for treating pesticide-contaminated wastewater.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Hierro , Neonicotinoides , Contaminantes Químicos del Agua , Humedales , Carbón Orgánico/química , Contaminantes Químicos del Agua/metabolismo , Neonicotinoides/química , Neonicotinoides/metabolismo , Hierro/química , Manganeso , Aguas Residuales/química , Nitrógeno/metabolismo , Microbiota , Fósforo/química , Bacterias/genética , Bacterias/metabolismo , Adsorción , Insecticidas/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitrocompuestos
15.
Water Res ; 261: 122033, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38996732

RESUMEN

Iron-rich constructed wetlands (CWs) could promote phenanthrene bioremediation efficiently through biotic and abiotic pathways, which have gained increasing attention. However, the biotic/abiotic transformation mechanisms of trace organic contaminants in iron-rich CW are still ambiguous. Herein, three CWs (i.e., CW-A: Control; CW-B: Iron-rich CW, CW-C: Iron-rich CW + tidal flow) were constructed to investigate the transformation mechanisms of phenanthrene through Mössbauer spectroscopy and metagenomics. Results demonstrated CW-C achieved the highest phenanthrene removal (94.0 %) and bacterial toxicity reduction (92.1 %) due to the optimized degradation pathway, and subsequently achieved the safe transformation of phenanthrene. Surface-bound/low-crystalline iron regulated hydroxyl radical (·OH) production predominantly, and its utilization was promoted in CW-C, which also improved electron transfer capacity. The enhanced electron transfer capacity led to the enrichment of PAH-degrading microorganisms (e.g., Thauera) and keystone species (Sphingobacteriales bacterium 46-32) in CW-C. Additionally, the abundances of phenanthrene transformation (e.g., EC:1.14.12.-) and tricarboxylic-acid-cycle (e.g., EC:2.3.3.1) enzyme were up-regulated in CW-C. Further analysis indicated that the safe transformation of phenanthrene was mainly attributed to the combined effect of abiotic (·OH and surface-bound/low-crystalline iron) and biotic (microbial community and diversity) mechanisms in CW-C, which contributed similarly. Our study revealed the essential role of active iron in the safe transformation of phenanthrene, and was beneficial for enhanced performance of iron-rich CW.


Asunto(s)
Biodegradación Ambiental , Hierro , Oxidación-Reducción , Fenantrenos , Humedales , Fenantrenos/metabolismo , Hierro/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacterias/metabolismo
16.
Environ Sci Pollut Res Int ; 31(34): 47189-47200, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990258

RESUMEN

The effects of salinity gradients (500-4000 mg·L-1 NaCl) on electricity generation, nitrogen removal, and microbial community were investigated in a constructed wetland-microbial fuel cell (CW-MFC) system. The result showed that power density significantly increased from 7.77 mW m-2 to a peak of 34.27 mW m-2 as salinity rose, indicating enhanced electron transfer capabilities under saline conditions. At a moderate salinity level of 2000 mg·L-1 NaCl, the removal efficiencies of NH4+-N and TN reached their maximum at 77.34 ± 7.61% and 48.45 ± 8.14%, respectively. This could be attributed to increased microbial activity and the presence of critical nitrogen-removal organisms, such as Nitrospira and unclassified Betaproteobacteria at the anode, as well as Bacillus, unclassified Rhizobiales, Sphingobium, and Simplicispira at the cathode. Additionally, this salinity corresponded with the highest abundance of Exiguobacterium (3.92%), a potential electrogenic bacterium, particularly at the cathode. Other microorganisms, including Geobacter, unclassified Planctomycetaceae, and Thauera, adapted well to elevated salinity, thereby enhancing both electricity generation and nitrogen removal.


Asunto(s)
Bacterias , Fuentes de Energía Bioeléctrica , Nitrógeno , Salinidad , Humedales , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos
17.
Sci Total Environ ; 949: 175074, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079636

RESUMEN

Exponential increases in energy consumption and wastewater have often irreversible environmental impacts. As a result, bio-electrochemical devices like microbial fuel cells (MFCs), which convert chemical energy in organic matter to electricity using exoelectrogenic bacteria, have gained interest. However, operational factors affecting efficiency and energy output need further study. This research investigated bioenergy production and COD, TN, and TP removal in mesoscale floating treatment wetlands (FTW-MFC) using Phragmites australis, Iris pseudacorus, and a mix of both. The Iris FTW-MFC achieved a high voltage peak of 2100 mV. The maximum power densities of 484 mW/m2, 1196 mW/m2, and 441 mW/m2 were observed for Phragmites, Iris, and mixed FTW-MFCs, respectively. Despite promising bioenergy yields, pollutant removal was unsatisfactory. A low area/height ratio (0.38 m2/0.8 m) and high loading rate (18.1 g/m2·d COD) boosted bioenergy output but hindered treatment performance and stressed plants, causing root decay. No significant pollutant removal differences were found between FTW-MFC and FTW. Higher relative plant growth rates occurred in the FTW-MFC. Microbial analysis shown that representatives of Pseudomonas and Clostridium species were consistently found across all samples, involved in both organic compound transformation and electricity generation, contributed to successful microscale results. A supporting microscale MFC experiment showed wastewater composition's impact on bioenergy yield and pollutant removal. Pre-inoculated reactors improved organic matter transformation and electricity generation, while aeration increased voltage and treatment performance. The role of plants requires further verification in future experiments.


Asunto(s)
Fuentes de Energía Bioeléctrica , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Eliminación de Residuos Líquidos/métodos , Electrodos , Poaceae
18.
Environ Sci Pollut Res Int ; 31(32): 44730-44743, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954343

RESUMEN

Owing to the impact of the effluent C/N from the secondary structures of urban domestic wastewater treatment plants, the denitrification efficiency in constructed wetlands (CWs) is not satisfactory, limiting their widespread application in the deep treatment of urban domestic wastewater. To address this issue, we constructed enhanced CWs and conducted orthogonal experiments to investigate the effects of different factors (C/N, fillers, and plants) on the removal of conventional pollutants and the reduction of greenhouse gas (GHG) emission. The experimental results indicated that a C/N of 8, manganese sand, and calamus achieved the best denitrification efficiencies with removal efficiencies of 85.7%, 95.9%, and 88.6% for TN, NH4+-N, and COD, respectively. In terms of GHG emission reduction, this combination resulted in the lowest global warming potential (176.8 mg/m2·day), with N2O and CH4 emissions of 0.53 and 1.25 mg/m2·day, respectively. Characterization of the fillers revealed the formation of small spherical clusters of phosphates on the surfaces of manganese sand and pyrite and iron oxide crystals on the surface of pyrite. Additionally, the surface Mn (II) content of the manganese sand increased by 8.8%, and the Fe (III)/Fe (II) and SO42-/S2- on pyrite increased by 2.05 and 0.26, respectively, compared to pre-experiment levels. High-throughput sequencing indicated the presence of abundant autotrophic denitrifying bacteria (Sulfuriferula, Sulfuritalea, and Thiobacillus) in the CWs, which explains denitrification performance of the enhanced CWs. This study aimed to explore the mechanism of efficient denitrification and GHG emission reduction in the enhanced CWs, providing theoretical guidance for the deep treatment of urban domestic wastewater.


Asunto(s)
Gases de Efecto Invernadero , Aguas Residuales , Humedales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Desnitrificación
19.
Heliyon ; 10(13): e33284, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027573

RESUMEN

Constructed wetlands (CWs) are systems designed to maximize pollutants removal by various mechanisms, most of which are associated with the presence of plants. However, the substances secreted by plants to defend themselves against external aggressions during their growth are very little studied in these systems. This study aimed to characterize the chemical constituents of Pennisetum purpureum extracts used in an experimental mesocosm filled with shale and laterite treating domestic wastewater. Above-ground biomass, strain diameter and secondary metabolites of P. purpureum plants grown on the different substrates (shale and laterite) were monitored, as were those grown on the experimental site (control). In addition, the removal performance of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total Kjedahl nitrogen (TKN) and Total Phosphorus (TP) was determined at the outlet of CWs. Plant biomass measured on the shale bed (13.7 ± 0.5 kg m-2) was higher than on the laterite bed (12.5 ± 0.1 kg m-2), both lower than the biomass obtained in the natural environment (14.9 ± 0.6 kg m-2). Performances ranged from 83 ± 5.4 to 76.9 ± 7 % (COD), 84.7 ± 6.8 to 78 ± 8.1 % (BOD5), 72.2 ± 10.7 to 55.5 ± 16.4 % (NTK) and 72.4 ± 4.9 to 58.4 ± 3.4 % (TP), with higher efficiencies in the shale-filled bed. Plant extracts from the experimental site were richer in secondary metabolites (total polyphenol [73.5 mgEAG/gMS], total flavonoids [18.1 mgEQ/gMS] and condensed tannin [13.3 mgEC/gMS]) than those from plants grown in CWs. However, plants in the shale-filled bed secreted more total polyphenol (57.7 mgEAG/gMS), total flavonoids (12.1 mgEQ/gMS) and condensed tannin (12 mgEC/gMS) than those in the laterite-filled bed. In short, wastewater and filtration materials have an influence on the secretion of secondary plant metabolites. However, of the two materials, shale seems to be better suited to CWs, as it promotes an environment close to the natural environment.

20.
Environ Res ; 258: 119393, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857856

RESUMEN

Constructed wetlands have been widely employed as a cost-effective and environmentally friendly alternative for treating primary and secondary sewage effluents. In this study, biochar and pyrite were utilized as electron donor substrates in intermittent-aerated vertical flow constructed wetlands to strengthen the nutrient and heavy metals removal simultaneously, and the response of nutrient reduction and microbial community to heavy metals stress was also explored. The results indicated that biochar addition exhibited a better nitrogen removal, while pyrite addition greatly promoted the phosphorus removal. Moreover, the high removal efficiencies of Cu2+, Pb2+ and Cd2+ (above 90%) except for Zn2+ were obtained in each system. However, the exposure of heavy metals decreased phosphorus removal while had little effect on nitrogen removal. The influent load and intermittent aeration implementation led to a significant shift in microbial community structures, but microbial biodiversity and abundance decreased under the exposure of heavy metals. Particularly, Thiobacillus and Ferritrophicum, associated with sulfur autotrophic denitrification and iron autotrophic denitrification, were more abundant in pyrite-based wetland systems.


Asunto(s)
Carbón Orgánico , Hierro , Metales Pesados , Sulfuros , Humedales , Carbón Orgánico/química , Hierro/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Fósforo , Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA