Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Neurosci Conscious ; 2024(1): niae032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101126

RESUMEN

Afterimages are illusory, visual conscious perceptions. A widely accepted theory is that afterimages are caused by retinal signaling that continues after the physical disappearance of a light stimulus. However, afterimages have been reported without preceding visual, sensory stimulation (e.g. conditioned afterimages and afterimages induced by illusory vision). These observations suggest the role of top-down brain mechanisms in afterimage conscious perception. Therefore, some afterimages may share perceptual features with sensory-independent conscious perceptions (e.g. imagery, hallucinations, and dreams) that occur without bottom-up sensory input. In the current investigation, we tested for a link between the vividness of visual imagery and afterimage conscious perception. Participants reported their vividness of visual imagery and perceived sharpness, contrast, and duration of negative afterimages. The afterimage perceptual features were acquired using perception matching paradigms that were validated on image stimuli. Relating these perceptual reports revealed that the vividness of visual imagery positively correlated with afterimage contrast and sharpness. These behavioral results support shared neural mechanisms between visual imagery and afterimages. However, we cannot exclude alternative explanations, including demand characteristics and afterimage perception reporting inaccuracy. This study encourages future research combining neurophysiology recording methods and afterimage paradigms to directly examine the neural mechanisms of afterimage conscious perception.

2.
Brain Sci ; 14(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39061453

RESUMEN

The Global Neuronal Workspace (GNW) hypothesis states that the visual percept is available to conscious awareness only if recurrent long-distance interactions among distributed brain regions activate neural circuitry extending from the posterior areas to prefrontal regions above a certain excitation threshold. To directly test this hypothesis, we trained 14 human participants to increase blood oxygenation level-dependent (BOLD) signals with real-time functional magnetic resonance imaging (rtfMRI)-based neurofeedback simultaneously in four specific regions of the occipital, temporal, insular and prefrontal parts of the brain. Specifically, we hypothesized that the up-regulation of the mean BOLD activity in the posterior-frontal brain regions lowers the perceptual threshold for visual stimuli, while down-regulation raises the threshold. Our results showed that participants could perform up-regulation (Wilcoxon test, session 1: p = 0.022; session 4: p = 0.041) of the posterior-frontal brain activity, but not down-regulation. Furthermore, the up-regulation training led to a significant reduction in the visual perceptual threshold, but no substantial change in perceptual threshold was observed after the down-regulation training. These findings show that the up-regulation of the posterior-frontal regions improves the perceptual discrimination of the stimuli. However, further questions as to whether the posterior-frontal regions can be down-regulated at all, and whether down-regulation raises the perceptual threshold, remain unanswered.

3.
Neuroimage ; 296: 120668, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848982

RESUMEN

Our brain excels at recognizing objects, even when they flash by in a rapid sequence. However, the neural processes determining whether a target image in a rapid sequence can be recognized or not remains elusive. We used electroencephalography (EEG) to investigate the temporal dynamics of brain processes that shape perceptual outcomes in these challenging viewing conditions. Using naturalistic images and advanced multivariate pattern analysis (MVPA) techniques, we probed the brain dynamics governing conscious object recognition. Our results show that although initially similar, the processes for when an object can or cannot be recognized diverge around 180 ms post-appearance, coinciding with feedback neural processes. Decoding analyses indicate that gist perception (partial conscious perception) can occur at ∼120 ms through feedforward mechanisms. In contrast, object identification (full conscious perception of the image) is resolved at ∼190 ms after target onset, suggesting involvement of recurrent processing. These findings underscore the importance of recurrent neural connections in object recognition and awareness in rapid visual presentations.


Asunto(s)
Estado de Conciencia , Electroencefalografía , Reconocimiento Visual de Modelos , Humanos , Femenino , Masculino , Electroencefalografía/métodos , Adulto , Estado de Conciencia/fisiología , Adulto Joven , Reconocimiento Visual de Modelos/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Reconocimiento en Psicología/fisiología , Estimulación Luminosa/métodos
4.
Neuroimage ; 294: 120647, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761552

RESUMEN

Mental representation is a key concept in cognitive science; nevertheless, its neural foundations remain elusive. We employed non-invasive electrical brain stimulation and functional magnetic resonance imaging to address this. During this process, participants perceived flickering red and green visual stimuli, discerning them either as distinct, non-fused colours or as a mentally generated, fused colour (orange). The application of transcranial alternating current stimulation to the medial prefrontal region (a key node of the default-mode network) suppressed haemodynamic activation in higher-order subthalamic and central executive networks associated with the perception of fused colours. This implies that higher-order thalamocortical and default-mode networks are crucial in humans' conscious perception of mental representation.


Asunto(s)
Estado de Conciencia , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Adulto , Estimulación Transcraneal de Corriente Directa/métodos , Estado de Conciencia/fisiología , Adulto Joven , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Percepción de Color/fisiología , Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Estimulación Luminosa/métodos
5.
Neuroimage ; 285: 120476, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030051

RESUMEN

Multimodal stimulation can reverse pathological neural activity and improve symptoms in neuropsychiatric diseases. Recent research shows that multimodal acoustic-electric trigeminal-nerve stimulation (TNS) (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) can improve consciousness in patients with disorders of consciousness. However, the reliability and mechanism of this novel approach remain largely unknown. We explored the effects of multimodal acoustic-electric TNS in healthy human participants by assessing conscious perception before and after stimulation using behavioral and neural measures in tactile and auditory target-detection tasks. To explore the mechanisms underlying the putative effects of acoustic-electric stimulation, we fitted a biologically plausible neural network model to the neural data using dynamic causal modeling. We observed that (1) acoustic-electric stimulation improves conscious tactile perception without a concomitant change in auditory perception, (2) this improvement is caused by the interplay of the acoustic and electric stimulation rather than any of the unimodal stimulation alone, and (3) the effect of acoustic-electric stimulation on conscious perception correlates with inter-regional connection changes in a recurrent neural processing model. These results provide evidence that acoustic-electric TNS can promote conscious perception. Alterations in inter-regional cortical connections might be the mechanism by which acoustic-electric TNS achieves its consciousness benefits.


Asunto(s)
Percepción Auditiva , Estado de Conciencia , Humanos , Reproducibilidad de los Resultados , Estimulación Eléctrica , Percepción Auditiva/fisiología , Estimulación Acústica/métodos , Acústica , Nervio Trigémino/fisiología
6.
Cell ; 186(26): 5739-5750.e17, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38070510

RESUMEN

Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.


Asunto(s)
Electroencefalografía , Parvalbúminas , Sueño , Animales , Ratones , Neuronas Colinérgicas/fisiología , Lóbulo Frontal/metabolismo , Parvalbúminas/metabolismo , Sueño/fisiología , Vigilia/fisiología
7.
J Neurosci ; 43(35): 6164-6175, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37536980

RESUMEN

Prior knowledge has a profound impact on the way we perceive the world. However, it remains unclear how the prior knowledge is maintained in our brains and thereby influences the subsequent conscious perception. The Dalmatian dog illusion is a perfect tool to study prior knowledge, where the picture is initially perceived as noise. Once the prior knowledge was introduced, a Dalmatian dog could be consciously seen, and the picture immediately became meaningful. Using pictures with hidden objects as standard stimuli and similar pictures without hidden objects as deviant stimuli, we investigated the neural representation of prior knowledge and its impact on conscious perception in an oddball paradigm using electroencephalogram (EEG) in both male and female human subjects. We found that the neural patterns between the prestimulus alpha band oscillations and poststimulus EEG activity were significantly more similar for the standard stimuli than for the deviant stimuli after prior knowledge was provided. Furthermore, decoding analysis revealed that persistent neural templates were evoked after the introduction of prior knowledge, similar to that evoked in the early stages of visual processing. In conclusion, the current study suggests that prior knowledge uses alpha band oscillations in a multivariate manner in the prestimulus period and induces specific persistent neural templates in the poststimulus period, enabling the conscious perception of the hidden objects.SIGNIFICANCE STATEMENT The visual world we live in is not always optimal. In dark or noisy environments, prior knowledge can help us interpret imperfect sensory signals and enable us to consciously perceive hidden objects. However, we still know very little about how prior knowledge works at the neural level. Using the Dalmatian dog illusion and multivariate methods, we found that prior knowledge uses prestimulus alpha band oscillations to carry information about the hidden object and exerts a persistent influence in the poststimulus period by inducing specific neural templates. Our findings provide a window into the neural underpinnings of prior knowledge and offer new insights into the role of alpha band oscillations and neural templates associated with conscious perception.


Asunto(s)
Ilusiones , Animales , Perros , Humanos , Masculino , Femenino , Ilusiones/fisiología , Percepción Visual/fisiología , Electroencefalografía/métodos , Encéfalo , Estado de Conciencia/fisiología , Estimulación Luminosa/métodos
8.
Front Psychol ; 14: 1130105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265955

RESUMEN

There is a great deal of research describing the close association that exists between numerical and spatial representations, illustrating the SNARC (Spatial-Numerical Association of Response Code) effect. This effect signals the spatial mental representation of small numbers to the left and larger numbers to the right, coinciding with the direction of reading and writing. Subsequent research has found a similar spatial representation for other stimuli (e.g., size of objects and animals, and words associated with time). Some of these spatially represented stimuli are social in nature, even suggesting a spatial mental organization of stimuli based on gender (e.g., the upper part of a vertical axis for males and the lower part for females). The aim of the present study was threefold (1) to replicate and extend results on the existence of a mental gender line (as a function of response hand: female-left hand and male-right hand) when responding simply to gender of stimuli; (2) to explore the influence of inhibitory control; and, (3) to determine whether gender-space associations depend on the explicit or implicit nature of a gender task. Three experiments were designed to pursue these objectives. In Experiment 1, female, male and neutral faces and names were displayed, and the participants were asked to identify their gender. Experiment 2, which also included a Stroop task, followed the same procedure as Experiment 1, but displayed objects that could be designated as female or male and others not related to any gender. Finally, in Experiment 3, in which participants were asked to respond to the direction of an arrow, object gender was not relevant to the task. Consistent with previous research and confirming our hypotheses, the results showed a spatial mental representation of the stimuli based on gender in all three experiments, regardless of whether the stimulus was consciously perceived. Moreover, inhibitory ability showed a relationship with the gender-space line effect. The contributions and implications of this study are discussed, as are possible limitations and future lines of research.

9.
Front Comput Neurosci ; 17: 1040629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994445

RESUMEN

Neurophysiological differentiation (ND), a measure of the number of distinct activity states that a neural population visits over a time interval, has been used as a correlate of meaningfulness or subjective perception of visual stimuli. ND has largely been studied in non-invasive human whole-brain recordings where spatial resolution is limited. However, it is likely that perception is supported by discrete neuronal populations rather than the whole brain. Therefore, here we use Neuropixels recordings from the mouse brain to characterize the ND metric across a wide range of temporal scales, within neural populations recorded at single-cell resolution in localized regions. Using the spiking activity of thousands of simultaneously recorded neurons spanning 6 visual cortical areas and the visual thalamus, we show that the ND of stimulus-evoked activity of the entire visual cortex is higher for naturalistic stimuli relative to artificial ones. This finding holds in most individual areas throughout the visual hierarchy. Moreover, for animals performing an image change detection task, ND of the entire visual cortex (though not individual areas) is higher for successful detection compared to failed trials, consistent with the assumed perception of the stimulus. Together, these results suggest that ND computed on cellular-level neural recordings is a useful tool highlighting cell populations that may be involved in subjective perception.

10.
BMC Neurosci ; 24(1): 12, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740677

RESUMEN

BACKGROUND: Trait anxiety refers to a stable tendency to experience fears and worries across many situations. High trait anxiety is a vulnerability factor for the development of psychopathologies. Self-reported trait anxiety appears to be associated with an automatic processing advantage for threat-related information. Self-report measures assess aspects of the explicit self-concept of anxiety. Indirect measures can tap into the implicit self-concept of anxiety. METHODS: We examined automatic brain responsiveness to non-conscious threat as a function of trait anxiety using functional magnetic resonance imaging. Besides a self-report instrument, we administered the Implicit Association Test (IAT) to assess anxiety. We used a gender-decision paradigm presenting brief (17 ms) and backward-masked facial expressions depicting disgust and fear. RESULTS: Explicit trait anxiety was not associated with brain responsiveness to non-conscious threat. However, a relation of the implicit self-concept of anxiety with masked fear processing in the thalamus, precentral gyrus, and lateral prefrontal cortex was observed. CONCLUSIONS: We provide evidence that a measure of the implicit self-concept of anxiety is a valuable predictor of automatic neural responses to threat in cortical and subcortical areas. Hence, implicit anxiety measures could be a useful addition to explicit instruments. Our data support the notion that the thalamus may constitute an important neural substrate in biased non-conscious processing in anxiety.


Asunto(s)
Encéfalo , Miedo , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Ansiedad , Trastornos de Ansiedad , Mapeo Encefálico , Imagen por Resonancia Magnética
11.
Trends Cogn Sci ; 27(5): 420-432, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36842851

RESUMEN

Theories of consciousness are often based on the assumption that a single, unified neurobiological account will explain different types of conscious awareness. However, recent findings show that, even within a single modality such as conscious visual perception, the anatomical location, timing, and information flow of neural activity related to conscious awareness vary depending on both external and internal factors. This suggests that the search for generic neural correlates of consciousness may not be fruitful. I argue that consciousness science requires a more pluralistic approach and propose a new framework: joint determinant theory (JDT). This theory may be capable of accommodating different brain circuit mechanisms for conscious contents as varied as percepts, wills, memories, emotions, and thoughts, as well as their integrated experience.


Asunto(s)
Estado de Conciencia , Percepción Visual , Humanos , Visión Ocular , Emociones , Neurobiología , Concienciación
12.
Neurosci Biobehav Rev ; 146: 105043, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642288

RESUMEN

Several authors have proposed that perceptual information carries labels that identify temporal features, including time of occurrence, ordinal temporal relations, and brief durations. These labels serve to locate and organise perceptual objects, features, and events in time. In some proposals time marking has local, specific functions such as synchronisation of different features in perceptual processing. In other proposals time marking has general significance and is responsible for rendering perceptual experience temporally coherent, just as various forms of spatial information render the visual environment spatially coherent. These proposals, which all concern time marking on the millisecond time scale, are reviewed. It is concluded that time marking is vital to the construction of a multisensory perceptual world in which things are orderly with respect to both space and time, but that much more research is needed to ascertain its functions in perception and its neurophysiological foundations.


Asunto(s)
Percepción del Tiempo , Percepción Visual , Humanos , Percepción Visual/fisiología , Factores de Tiempo , Estimulación Luminosa , Estimulación Acústica , Percepción Auditiva/fisiología
13.
Cereb Cortex ; 33(5): 2048-2060, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35609335

RESUMEN

How do attentional networks influence conscious perception? To answer this question, we used magnetoencephalography in human participants and assessed the effects of spatially nonpredictive or predictive supra-threshold peripheral cues on the conscious perception of near-threshold Gabors. Three main results emerged. (i) As compared with invalid cues, both nonpredictive and predictive valid cues increased conscious detection. Yet, only predictive cues shifted the response criterion toward a more liberal decision (i.e. willingness to report the presence of a target under conditions of greater perceptual uncertainty) and affected target contrast leading to 50% detections. (ii) Conscious perception following valid predictive cues was associated to enhanced activity in frontoparietal networks. These responses were lateralized to the left hemisphere during attentional orienting and to the right hemisphere during target processing. The involvement of frontoparietal networks occurred earlier in valid than in invalid trials, a possible neural marker of the cost of re-orienting attention. (iii) When detected targets were preceded by invalid predictive cues, and thus reorienting to the target was required, neural responses occurred in left hemisphere temporo-occipital regions during attentional orienting, and in right hemisphere anterior insular and temporo-occipital regions during target processing. These results confirm and specify the role of frontoparietal networks in modulating conscious processing and detail how invalid orienting of spatial attention disrupts conscious processing.


Asunto(s)
Magnetoencefalografía , Orientación , Humanos , Tiempo de Reacción/fisiología , Orientación/fisiología , Atención/fisiología , Percepción Visual/fisiología , Señales (Psicología) , Percepción Espacial/fisiología
14.
Neuroimage ; 264: 119748, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370957

RESUMEN

Although conscious perception is a fundamental cognitive function, its neural correlates remain unclear. It remains debatable whether thalamocortical interactions play a decisive role in conscious perception. To clarify this, we used functional magnetic resonance imaging (fMRI) where flickering red and green visual cues could be perceived either as a non-fused colour or fused colour. Here we show significantly differentiated fMRI neurodynamics only in higher-order thalamocortical regions, compared with first-order thalamocortical regions. Anticorrelated neurodynamic behaviours were observed between the visual stream network and default-mode network. Its dynamic causal modelling consistently provided compelling evidence for the involvement of higher-order thalamocortical iterative integration during conscious perception of fused colour, while inhibitory control was revealed during the non-fusion condition. Taken together with our recent magnetoencephalography study, our fMRI findings corroborate a thalamocortical inhibitory model for consciousness, where both thalamic inhibitory regulation and integrative signal iterations across higher-order thalamocortical regions are essential for conscious perception.


Asunto(s)
Estado de Conciencia , Tálamo , Humanos , Estado de Conciencia/fisiología , Tálamo/fisiología , Imagen por Resonancia Magnética , Percepción
15.
Front Psychol ; 13: 740542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664197

RESUMEN

Life, whatsoever it is, is a temporal flux. Everything is doomed to change often apparently beyond our awareness. My body appears totally different now, so does my mind. I have gained new attitudes and new ambitions, and a substantial number of old ones have been discarded. But, I am still the same person in an ongoing manner. Besides, recent neuroscientific and psychological evidence has shown that our conscious perception happens as a series of discrete or bounded instants-it emerges in temporally scattered, gappy, and discrete forms. But, if it is so, how does the brain persevere our self-continuity (or continuity of identity) in this gappy setting? How is it possible that despite moment-to-moment changes in my appearance and mind, I am still feeling that I am that person? How can we tackle with this second by second gap and resurrection in our existence which leads to a foundation of wholeness and continuity of our self? How is continuity of self (collective set of our connected experiences in the vessel of time) that results in a feeling that one's life has purpose and meaning preserved? To answer these questions, the problem has been comprehended from a philosophical, psychological, and neuroscientific perspective. I realize that first and foremost fact lies in the temporal nature of identity. Having equipped with these thoughts, in this article, it is hypothesized that according to two principles (the principle of reafference or corollary discharge and the principle of a time theory) self-continuity is maintained. It is supposed that there should be a precise temporal integration mechanism in the CNS with the outside world that provides us this smooth, ungappy flow of the Self. However, we are often taken for granted the importance of self-continuity, but it can be challenged by life transitions such as entering adulthood, retirement, senility, emigration, and societal changes such as immigration, globalization, and in much unfortunate and extreme cases of mental illnesses such as schizophrenia.

16.
Brain Sci ; 12(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35741623

RESUMEN

To further understand how consciousness emerges, certain paradigms inducing distractor-induced perceptual impairments are promising. Neuro-computational models explain the inhibition of conscious perception of targets with suppression of distractor information when the target and distractor share the same features. Because these gating mechanisms are controlled by the prefrontal cortex, transcranial direct current stimulation of this specific region is expected to alter distractor-induced effects depending on the presence and number of distractors. To this end, participants were asked to perform an auditory variant of the distractor-induced blindness paradigm under frontal transcranial direct current stimulation (tDCS). Results show the expected distractor-induced deafness effects in a reduction of target detection depending on the number of distractors. While tDCS had no significant effects on target detection per se, error rates due to missed cues are increased under stimulation. Thus, while our variant led to successful replication of behavioral deafness effects, the results under tDCS stimulation indicate that the chosen paradigm may have difficulty too low to respond to stimulation. That the error rates nevertheless led to a tDCS effect may be due to the divided attention between the visual cue and the auditory target.

17.
Conscious Cogn ; 100: 103316, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35358869

RESUMEN

Conscious perceptual experiences are expected to correlate with content-specific brain activity. A veridicality problem arises when attempting to disentangle unconscious and conscious brain processes if conscious perceptual contents accurately match the physical nature of the stimulus. We argue that perceptual filling-in, a phenomenon whereby visual information inaccurately spreads across visual space, is a promising approach to circumvent the veridicality problem. Filling-in generates non-veridical although unambiguous percepts dissociated from stimulus input. In particular, the radial uniformity illusion induces a filling-in experience between a central disk and the surrounding periphery. We discuss how this illusion facilitates both the detection of neurophysiological responses and subjective phenomenological monitoring. We report behavioral effects from a large-sample (n = 200) psychophysics study and examine key stimulus parameters that drive the conscious filling-in experience. We propose that these data underpin future hypothesis-driven studies of filling-in to further delineate the neural mechanisms of conscious perception.


Asunto(s)
Ilusiones , Encéfalo/fisiología , Estado de Conciencia/fisiología , Humanos , Psicofísica , Percepción Visual/fisiología
18.
Neurosci Conscious ; 2022(1): niac005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223085

RESUMEN

The role of the primate prefrontal cortex (PFC) in conscious perception is debated. The global neuronal workspace theory of consciousness predicts that PFC neurons should contain a detailed code of the current conscious contents. Previous research showed that PFC is indeed activated in paradigms of conscious visual perception, including no-report paradigms where no voluntary behavioral report of the percept is given, thus avoiding a conflation of signals related to visual consciousness with signals related to the report. Still, it has been argued that prefrontal modulation could reflect post-perceptual processes that may be present even in the absence of report, such as thinking about the perceived stimulus, therefore reflecting a consequence rather than a direct correlate of conscious experience. Here, we investigate these issues by recording neuronal ensemble activity from the macaque ventrolateral PFC during briefly presented visual stimuli, either in isolated trials in which stimuli were clearly perceived or in sequences of rapid serial visual presentation (RSVP) in which perception and post-perceptual processing were challenged. We report that the identity of each stimulus could be decoded from PFC population activity even in the RSVP condition. The first visual signals could be detected at 60 ms after stimulus onset and information was maximal at 150 ms. However, in the RSVP condition, 200 ms after the onset of a stimulus, the decoding accuracy quickly dropped to chance level and the next stimulus started to be decodable. Interestingly, decoding in the ventrolateral PFC was stronger compared to posterior parietal cortex for both isolated and RSVP stimuli. These results indicate that neuronal populations in the macaque PFC reliably encode visual stimuli even under conditions that have been shown to challenge conscious perception and/or substantially reduce the probability of post-perceptual processing in humans. We discuss whether the observed activation reflects conscious access, phenomenal consciousness, or merely a preconscious bottom-up wave.

19.
Curr Biol ; 32(5): 988-998.e6, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35090592

RESUMEN

It is commonly held that what we see and what we believe we see are overlapping phenomena. However, dissociations between sensory events and their subjective interpretation occur in the general population and in clinical disorders, raising the question as to whether perceptual accuracy and its subjective interpretation represent mechanistically dissociable events. Here, we uncover the role that alpha oscillations play in shaping these two indices of human conscious experience. We used electroencephalography (EEG) to measure occipital alpha oscillations during a visual detection task, which were then entrained using rhythmic-TMS. We found that controlling prestimulus alpha frequency by rhythmic-TMS modulated perceptual accuracy, but not subjective confidence in it, whereas controlling poststimulus (but not prestimulus) alpha amplitude modulated how well subjective confidence judgments can distinguish between correct and incorrect decision, but not accuracy. These findings provide the first causal evidence of a double dissociation between alpha speed and alpha amplitude, linking alpha frequency to spatiotemporal sampling resources and alpha amplitude to the internal, subjective representation and interpretation of sensory events.


Asunto(s)
Ritmo alfa , Percepción Visual , Estado de Conciencia , Electroencefalografía , Humanos , Juicio , Estimulación Luminosa
20.
Eur J Neurosci ; 55(11-12): 3178-3190, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33539589

RESUMEN

Ongoing oscillatory neural activity before stimulus onset influences subsequent visual perception. Specifically, both the power and the phase of oscillations in the alpha-frequency band (9-13 Hz) have been reported to predict the detection of visual stimuli. Up to now, the functional mechanisms underlying pre-stimulus power and phase effects on upcoming visual percepts are debated. Here, we used magnetoencephalography recordings together with a near-threshold visual detection task to investigate the neural generators of pre-stimulus power and phase and their impact on subsequent visual-evoked responses. Pre-stimulus alpha-band power and phase opposition effects were found consistent with previous reports. Source localization suggested clearly distinct neural generators for these pre-stimulus effects: Power effects were mainly found in occipital-temporal regions, whereas phase effects also involved prefrontal areas. In order to be functionally relevant, the pre-stimulus correlates should influence post-stimulus processing. Using a trial-sorting approach, we observed that only pre-stimulus power modulated the Hits versus Misses difference in the evoked response, a well-established post-stimulus neural correlate of near-threshold perception, such that trials with stronger pre-stimulus power effect showed greater post-stimulus difference. By contrast, no influence of pre-stimulus phase effects were found. In sum, our study shows distinct generators for two pre-stimulus neural patterns predicting visual perception, and that only alpha power impacts the post-stimulus correlate of conscious access. This underlines the functional relevance of prestimulus alpha power on perceptual awareness, while questioning the role of alpha phase.


Asunto(s)
Magnetoencefalografía , Percepción Visual , Ritmo alfa/fisiología , Estado de Conciencia , Electroencefalografía , Potenciales Evocados Visuales , Lóbulo Occipital/fisiología , Estimulación Luminosa , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA