Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Med Inform Decis Mak ; 24(1): 30, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297371

RESUMEN

OBJECTIVE: Clinical deep phenotyping and phenotype annotation play a critical role in both the diagnosis of patients with rare disorders as well as in building computationally-tractable knowledge in the rare disorders field. These processes rely on using ontology concepts, often from the Human Phenotype Ontology, in conjunction with a phenotype concept recognition task (supported usually by machine learning methods) to curate patient profiles or existing scientific literature. With the significant shift in the use of large language models (LLMs) for most NLP tasks, we examine the performance of the latest Generative Pre-trained Transformer (GPT) models underpinning ChatGPT as a foundation for the tasks of clinical phenotyping and phenotype annotation. MATERIALS AND METHODS: The experimental setup of the study included seven prompts of various levels of specificity, two GPT models (gpt-3.5-turbo and gpt-4.0) and two established gold standard corpora for phenotype recognition, one consisting of publication abstracts and the other clinical observations. RESULTS: The best run, using in-context learning, achieved 0.58 document-level F1 score on publication abstracts and 0.75 document-level F1 score on clinical observations, as well as a mention-level F1 score of 0.7, which surpasses the current best in class tool. Without in-context learning, however, performance is significantly below the existing approaches. CONCLUSION: Our experiments show that gpt-4.0 surpasses the state of the art performance if the task is constrained to a subset of the target ontology where there is prior knowledge of the terms that are expected to be matched. While the results are promising, the non-deterministic nature of the outcomes, the high cost and the lack of concordance between different runs using the same prompt and input make the use of these LLMs challenging for this particular task.


Asunto(s)
Conocimiento , Lenguaje , Humanos , Aprendizaje Automático , Fenotipo , Enfermedades Raras
2.
J Biomed Inform ; 139: 104293, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682389

RESUMEN

Invasive fungal infections (IFIs) are particularly dangerous to high-risk patients with haematological malignancies and are responsible for excessive mortality and delays in cancer therapy. Surveillance of IFI in clinical settings offers an opportunity to identify potential risk factors and evaluate new therapeutic strategies. However, manual surveillance is both time- and resource-intensive. As part of a broader project aimed to develop a system for automated IFI surveillance by leveraging electronic medical records, we present our approach to detecting evidence of IFI in the key diagnostic domain of histopathology. Using natural language processing (NLP), we analysed cytology and histopathology reports to identify IFI-positive reports. We compared a conventional bag-of-words classification model to a method that relies on concept-level annotations. Although the investment to prepare data supporting concept annotations is substantial, extracting targeted information specific to IFI as a pre-processing step increased the performance of the classifier from the PR AUC of 0.84 to 0.92 and enabled model interpretability. We have made publicly available the annotated dataset of 283 reports, the Cytology and Histopathology IFI Reports corpus (CHIFIR), to allow the clinical NLP research community to further build on our results.


Asunto(s)
Infecciones Fúngicas Invasoras , Humanos , Infecciones Fúngicas Invasoras/epidemiología , Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Factores de Riesgo
3.
BMC Bioinformatics ; 22(Suppl 1): 623, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331131

RESUMEN

BACKGROUND: Named Entity Recognition (NER) and Normalisation (NEN) are core components of any text-mining system for biomedical texts. In a traditional concept-recognition pipeline, these tasks are combined in a serial way, which is inherently prone to error propagation from NER to NEN. We propose a parallel architecture, where both NER and NEN are modeled as a sequence-labeling task, operating directly on the source text. We examine different harmonisation strategies for merging the predictions of the two classifiers into a single output sequence. RESULTS: We test our approach on the recent Version 4 of the CRAFT corpus. In all 20 annotation sets of the concept-annotation task, our system outperforms the pipeline system reported as a baseline in the CRAFT shared task, a competition of the BioNLP Open Shared Tasks 2019. We further refine the systems from the shared task by optimising the harmonisation strategy separately for each annotation set. CONCLUSIONS: Our analysis shows that the strengths of the two classifiers can be combined in a fruitful way. However, prediction harmonisation requires individual calibration on a development set for each annotation set. This allows achieving a good trade-off between established knowledge (training set) and novel information (unseen concepts).


Asunto(s)
Minería de Datos
4.
J Biomed Inform ; 129: 104059, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35351638

RESUMEN

The study aims at developing a neural network model to improve the performance of Human Phenotype Ontology (HPO) concept recognition tools. We used the terms, definitions, and comments about the phenotypic concepts in the HPO database to train our model. The document to be analyzed is first split into sentences and annotated with a base method to generate candidate concepts. The sentences, along with the candidate concepts, are then fed into the pre-trained model for re-ranking. Our model comprises the pre-trained BlueBERT and a feature selection module, followed by a contrastive loss. We re-ranked the results generated by three robust HPO annotation tools and compared the performance against most of the existing approaches. The experimental results show that our model can improve the performance of the existing methods. Significantly, it boosted 3.0% and 5.6% in F1 score on the two evaluated datasets compared with the base methods. It removed more than 80% of the false positives predicted by the base methods, resulting in up to 18% improvement in precision. Our model utilizes the descriptive data in the ontology and the contextual information in the sentences for re-ranking. The results indicate that the additional information and the re-ranking model can significantly enhance the precision of HPO concept recognition compared with the base method.


Asunto(s)
Lenguaje , Redes Neurales de la Computación , Bases de Datos Factuales , Humanos , Fenotipo
5.
Front Artif Intell ; 5: 1051724, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714202

RESUMEN

Objective: The adoption of electronic health records (EHRs) has produced enormous amounts of data, creating research opportunities in clinical data sciences. Several concept recognition systems have been developed to facilitate clinical information extraction from these data. While studies exist that compare the performance of many concept recognition systems, they are typically developed internally and may be biased due to different internal implementations, parameters used, and limited number of systems included in the evaluations. The goal of this research is to evaluate the performance of existing systems to retrieve relevant clinical concepts from EHRs. Methods: We investigated six concept recognition systems, including CLAMP, cTAKES, MetaMap, NCBO Annotator, QuickUMLS, and ScispaCy. Clinical concepts extracted included procedures, disorders, medications, and anatomical location. The system performance was evaluated on two datasets: the 2010 i2b2 and the MIMIC-III. Additionally, we assessed the performance of these systems in five challenging situations, including negation, severity, abbreviation, ambiguity, and misspelling. Results: For clinical concept extraction, CLAMP achieved the best performance on exact and inexact matching, with an F-score of 0.70 and 0.94, respectively, on i2b2; and 0.39 and 0.50, respectively, on MIMIC-III. Across the five challenging situations, ScispaCy excelled in extracting abbreviation information (F-score: 0.86) followed by NCBO Annotator (F-score: 0.79). CLAMP outperformed in extracting severity terms (F-score 0.73) followed by NCBO Annotator (F-score: 0.68). CLAMP outperformed other systems in extracting negated concepts (F-score 0.63). Conclusions: Several concept recognition systems exist to extract clinical information from unstructured data. This study provides an external evaluation by end-users of six commonly used systems across different extraction tasks. Our findings suggest that CLAMP provides the most comprehensive set of annotations for clinical concept extraction tasks and associated challenges. Comparing standard extraction tasks across systems provides guidance to other clinical researchers when selecting a concept recognition system relevant to their clinical information extraction task.

6.
BMC Bioinformatics ; 22(Suppl 1): 598, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34920707

RESUMEN

BACKGROUND: Automated assignment of specific ontology concepts to mentions in text is a critical task in biomedical natural language processing, and the subject of many open shared tasks. Although the current state of the art involves the use of neural network language models as a post-processing step, the very large number of ontology classes to be recognized and the limited amount of gold-standard training data has impeded the creation of end-to-end systems based entirely on machine learning. Recently, Hailu et al. recast the concept recognition problem as a type of machine translation and demonstrated that sequence-to-sequence machine learning models have the potential to outperform multi-class classification approaches. METHODS: We systematically characterize the factors that contribute to the accuracy and efficiency of several approaches to sequence-to-sequence machine learning through extensive studies of alternative methods and hyperparameter selections. We not only identify the best-performing systems and parameters across a wide variety of ontologies but also provide insights into the widely varying resource requirements and hyperparameter robustness of alternative approaches. Analysis of the strengths and weaknesses of such systems suggest promising avenues for future improvements as well as design choices that can increase computational efficiency with small costs in performance. RESULTS: Bidirectional encoder representations from transformers for biomedical text mining (BioBERT) for span detection along with the open-source toolkit for neural machine translation (OpenNMT) for concept normalization achieve state-of-the-art performance for most ontologies annotated in the CRAFT Corpus. This approach uses substantially fewer computational resources, including hardware, memory, and time than several alternative approaches. CONCLUSIONS: Machine translation is a promising avenue for fully machine-learning-based concept recognition that achieves state-of-the-art results on the CRAFT Corpus, evaluated via a direct comparison to previous results from the 2019 CRAFT shared task. Experiments illuminating the reasons for the surprisingly good performance of sequence-to-sequence methods targeting ontology identifiers suggest that further progress may be possible by mapping to alternative target concept representations. All code and models can be found at: https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation .

7.
BMC Bioinformatics ; 22(Suppl 11): 337, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674631

RESUMEN

BACKGROUND: Concept recognition is a term that corresponds to the two sequential steps of named entity recognition and named entity normalization, and plays an essential role in the field of bioinformatics. However, the conventional dictionary-based methods did not sufficiently addressed the variation of the concepts in actual use in literature, resulting in the particularly degraded performances in recognition of multi-token concepts. RESULTS: In this paper, we propose a concept recognition method of multi-token biological entities using neural models combined with literature contexts. The key aspect of our method is utilizing the contextual information from the biological knowledge-bases for concept normalization, which is followed by named entity recognition procedure. The model showed improved performances over conventional methods, particularly for multi-token concepts with higher variations. CONCLUSIONS: We expect that our model can be utilized for effective concept recognition and variety of natural language processing tasks on bioinformatics.


Asunto(s)
Biología Computacional , Procesamiento de Lenguaje Natural , Publicaciones
8.
Neural Netw ; 139: 86-104, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33684612

RESUMEN

This paper introduces inverse ontology cogency, a concept recognition process and distance function that is biologically-inspired and competitive with alternative methods. The paper introduces inverse ontology cogency as a new alternative method. It is a novel distance measure used in selecting the optimum mapping between ontology-specified concepts and phrases in free-form text. We also apply a multi-layer perceptron and text processing method for named entity recognition as an alternative to recurrent neural network methods. Automated named entity recognition, or concept recognition, is a common task in natural language processing. Similarities between confabulation theory and existing language models are discussed. This paper provides comparisons to MetaMap from the National Library of Medicine (NLM), a popular tool used in medicine to map free-form text to concepts in a medical ontology. The NLM provides a manually annotated database from the medical literature with concepts labeled, a unique, valuable source of ground truth, permitting comparison with MetaMap performance. Comparisons for different feature set combinations are made to demonstrate the effectiveness of inverse ontology cogency for entity recognition. Results indicate that using both inverse ontology cogency and corpora cogency improved concept recognition precision 20% over the best published MetaMap results. This demonstrates a new, effective approach for identifying medical concepts in text. This is the first time cogency has been explicitly invoked for reasoning with ontologies, and the first time it has been used on medical literature where high-quality ground truth is available for quality assessment.


Asunto(s)
Ontologías Biológicas/tendencias , Bases de Datos Factuales/tendencias , National Library of Medicine (U.S.)/tendencias , Procesamiento de Lenguaje Natural , Corteza Cerebral/fisiología , Humanos , Red Nerviosa/fisiología , Redes Neurales de la Computación , Estados Unidos
9.
J Biomed Inform ; 100: 103318, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31655273

RESUMEN

BACKGROUND: Manually curating standardized phenotypic concepts such as Human Phenotype Ontology (HPO) terms from narrative text in electronic health records (EHRs) is time consuming and error prone. Natural language processing (NLP) techniques can facilitate automated phenotype extraction and thus improve the efficiency of curating clinical phenotypes from clinical texts. While individual NLP systems can perform well for a single cohort, an ensemble-based method might shed light on increasing the portability of NLP pipelines across different cohorts. METHODS: We compared four NLP systems, MetaMapLite, MedLEE, ClinPhen and cTAKES, and four ensemble techniques, including intersection, union, majority-voting and machine learning, for extracting generic phenotypic concepts. We addressed two important research questions regarding automated phenotype recognition. First, we evaluated the performance of different approaches in identifying generic phenotypic concepts. Second, we compared the performance of different methods to identify patient-specific phenotypic concepts. To better quantify the effects caused by concept granularity differences on performance, we developed a novel evaluation metric that considered concept hierarchies and frequencies. Each of the approaches was evaluated on a gold standard set of clinical documents annotated by clinical experts. One dataset containing 1,609 concepts derived from 50 clinical notes from two different institutions was used in both evaluations, and an additional dataset of 608 concepts derived from 50 case report abstracts obtained from PubMed was used for evaluation of identifying generic phenotypic concepts only. RESULTS: For generic phenotypic concept recognition, the top three performers in the NYP/CUIMC dataset are union ensemble (F1, 0.634), training-based ensemble (F1, 0.632), and majority vote-based ensemble (F1, 0.622). In the Mayo dataset, the top three are majority vote-based ensemble (F1, 0.642), cTAKES (F1, 0.615), and MedLEE (F1, 0.559). In the PubMed dataset, the top three are majority vote-based ensemble (F1, 0.719), training-based (F1, 0.696) and MetaMapLite (F1, 0.694). For identifying patient specific phenotypes, the top three performers in the NYP/CUIMC dataset are majority vote-based ensemble (F1, 0.610), MedLEE (F1, 0.609), and training-based ensemble (F1, 0.585). In the Mayo dataset, the top three are majority vote-based ensemble (F1, 0.604), cTAKES (F1, 0.531) and MedLEE (F1, 0.527). CONCLUSIONS: Our study demonstrates that ensembles of natural language processing can improve both generic phenotypic concept recognition and patient specific phenotypic concept identification over individual systems. Among the individual NLP systems, each individual system performed best when they were applied in the dataset that they were primary designed for. However, combining multiple NLP systems to create an ensemble can generally improve the performance. Specifically, the ensemble can increase the results reproducibility across different cohorts and tasks, and thus provide a more portable phenotyping solution compared to individual NLP systems.


Asunto(s)
Procesamiento de Lenguaje Natural , Fenotipo , Conjuntos de Datos como Asunto , Registros Electrónicos de Salud , Humanos , Reproducibilidad de los Resultados
10.
JMIR Med Inform ; 7(2): e12596, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31094361

RESUMEN

BACKGROUND: Automatic recognition of medical concepts in unstructured text is an important component of many clinical and research applications, and its accuracy has a large impact on electronic health record analysis. The mining of medical concepts is complicated by the broad use of synonyms and nonstandard terms in medical documents. OBJECTIVE: We present a machine learning model for concept recognition in large unstructured text, which optimizes the use of ontological structures and can identify previously unobserved synonyms for concepts in the ontology. METHODS: We present a neural dictionary model that can be used to predict if a phrase is synonymous to a concept in a reference ontology. Our model, called the Neural Concept Recognizer (NCR), uses a convolutional neural network to encode input phrases and then rank medical concepts based on the similarity in that space. It uses the hierarchical structure provided by the biomedical ontology as an implicit prior embedding to better learn embedding of various terms. We trained our model on two biomedical ontologies-the Human Phenotype Ontology (HPO) and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT). RESULTS: We tested our model trained on HPO by using two different data sets: 288 annotated PubMed abstracts and 39 clinical reports. We achieved 1.7%-3% higher F1-scores than those for our strongest manually engineered rule-based baselines (P=.003). We also tested our model trained on the SNOMED-CT by using 2000 Intensive Care Unit discharge summaries from MIMIC (Multiparameter Intelligent Monitoring in Intensive Care) and achieved 0.9%-1.3% higher F1-scores than those of our baseline. The results of our experiments show high accuracy of our model as well as the value of using the taxonomy structure of the ontology in concept recognition. CONCLUSION: Most popular medical concept recognizers rely on rule-based models, which cannot generalize well to unseen synonyms. In addition, most machine learning methods typically require large corpora of annotated text that cover all classes of concepts, which can be extremely difficult to obtain for biomedical ontologies. Without relying on large-scale labeled training data or requiring any custom training, our model can be efficiently generalized to new synonyms and performs as well or better than state-of-the-art methods custom built for specific ontologies.

11.
J Cheminform ; 11(1): 7, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30666476

RESUMEN

BACKGROUND: We present a text-mining tool for recognizing biomedical entities in scientific literature. OGER++ is a hybrid system for named entity recognition and concept recognition (linking), which combines a dictionary-based annotator with a corpus-based disambiguation component. The annotator uses an efficient look-up strategy combined with a normalization method for matching spelling variants. The disambiguation classifier is implemented as a feed-forward neural network which acts as a postfilter to the previous step. RESULTS: We evaluated the system in terms of processing speed and annotation quality. In the speed benchmarks, the OGER++ web service processes 9.7 abstracts or 0.9 full-text documents per second. On the CRAFT corpus, we achieved 71.4% and 56.7% F1 for named entity recognition and concept recognition, respectively. CONCLUSIONS: Combining knowledge-based and data-driven components allows creating a system with competitive performance in biomedical text mining.

12.
J Biomed Semantics ; 9(1): 2, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29316970

RESUMEN

BACKGROUND: Traditionally text mention normalization corpora have normalized concepts to single ontology identifiers ("pre-coordinated concepts"). Less frequently, normalization corpora have used concepts with multiple identifiers ("post-coordinated concepts") but the additional identifiers have been restricted to a defined set of relationships to the core concept. This approach limits the ability of the normalization process to express semantic meaning. We generated a freely available corpus using post-coordinated concepts without a defined set of relationships that we term "compositional concepts" to evaluate their use in clinical text. METHODS: We annotated 5397 disorder mentions from the ShARe corpus to SNOMED CT that were previously normalized as "CUI-less" in the "SemEval-2015 Task 14" shared task because they lacked a pre-coordinated mapping. Unlike the previous normalization method, we do not restrict concept mappings to a particular set of the Unified Medical Language System (UMLS) semantic types and allow normalization to occur to multiple UMLS Concept Unique Identifiers (CUIs). We computed annotator agreement and assessed semantic coverage with this method. RESULTS: We generated the largest clinical text normalization corpus to date with mappings to multiple identifiers and made it freely available. All but 8 of the 5397 disorder mentions were normalized using this methodology. Annotator agreement ranged from 52.4% using the strictest metric (exact matching) to 78.2% using a hierarchical agreement that measures the overlap of shared ancestral nodes. CONCLUSION: Our results provide evidence that compositional concepts can increase semantic coverage in clinical text. To our knowledge we provide the first freely available corpus of compositional concept annotation in clinical text.


Asunto(s)
Procesamiento de Lenguaje Natural , Systematized Nomenclature of Medicine , Programas Informáticos
13.
J Pathol Inform ; 9: 47, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662793

RESUMEN

INTRODUCTION/BACKGROUND: Cancer registries in the US collect timely and systematic data on new cancer cases, extent of disease, staging, biomarker status, treatment, survival, and mortality of cancer cases. Existing methodologies for accessing local cancer registry data for research are time-consuming and often rely on the manual merging of data by staff registrars. In addition, existing registries do not provide direct access to these data nor do they routinely provide linkage to discrete electronic health record (EHR) data, reports, or imaging data. Automation of such linkage can provide an impressive data resource and make valuable data available for translational cancer research. METHODS: The UPMC Network Cancer Registry collects highly structured, longitudinal data on all reportable cancer patients, from the point of the diagnosis throughout treatment and follow-up/outcomes. Using commercial registry software, we collect data in compliance with standards governed by the North American Association of Central Cancer Registries. This standardization ensures that the data are highly structured with standard coding and collection methods, which support data exchange among central cancer registries and the Centers for Disease Control and Prevention. RESULTS: At the UPMC Hillman Cancer Center and University of Pittsburgh, we explored the feasibility of linking this well-curated, structured cancer registry data with unstructured text (i.e., pathology and radiology reports), using the Text Information Extraction System (TIES). We used the TIES platform to integrate breast cancer cases from the UPMC Network Cancer Registry system and then combine these data with other EHR data as a pilot use case that can be replicated for other cancers. CONCLUSIONS: As a result of this integration, we now have a single searchable repository of information for breast cancer patients from the UPMC registry, combined with their pathology and radiology reports. The system that we developed is easily scalable to other health systems and cancer centers.

14.
J Biomed Semantics ; 7: 52, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27613112

RESUMEN

BACKGROUND: Gene Ontology (GO) terms represent the standard for annotation and representation of molecular functions, biological processes and cellular compartments, but a large gap exists between the way concepts are represented in the ontology and how they are expressed in natural language text. The construction of highly specific GO terms is formulaic, consisting of parts and pieces from more simple terms. RESULTS: We present two different types of manually generated rules to help capture the variation of how GO terms can appear in natural language text. The first set of rules takes into account the compositional nature of GO and recursively decomposes the terms into their smallest constituent parts. The second set of rules generates derivational variations of these smaller terms and compositionally combines all generated variants to form the original term. By applying both types of rules, new synonyms are generated for two-thirds of all GO terms and an increase in F-measure performance for recognition of GO on the CRAFT corpus from 0.498 to 0.636 is observed. Additionally, we evaluated the combination of both types of rules over one million full text documents from Elsevier; manual validation and error analysis show we are able to recognize GO concepts with reasonable accuracy (88 %) based on random sampling of annotations. CONCLUSIONS: In this work we present a set of simple synonym generation rules that utilize the highly compositional and formulaic nature of the Gene Ontology concepts. We illustrate how the generated synonyms aid in improving recognition of GO concepts on two different biomedical corpora. We discuss other applications of our rules for GO ontology quality assurance, explore the issue of overgeneration, and provide examples of how similar methodologies could be applied to other biomedical terminologies. Additionally, we provide all generated synonyms for use by the text-mining community.


Asunto(s)
Minería de Datos/métodos , Ontología de Genes , Semántica , Procesamiento de Lenguaje Natural , Reconocimiento de Normas Patrones Automatizadas
15.
J Biomed Semantics ; 6: 9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26005564

RESUMEN

Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in the context of a structured output support vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human protein function (F-max: Molecular Function =0.408, Biological Process =0.461, Cellular Component =0.608). One advantage of using literature features is their ability to offer easy verification of automated predictions. We find through manual inspection of misclassifications that some false positive predictions could be biologically valid predictions based upon support extracted from the literature. Additionally, we present a "medium-throughput" pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed up the rate at which proteins are curated.

16.
J Am Med Inform Assoc ; 21(5): 808-14, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24347408

RESUMEN

OBJECTIVE: Named entity recognition (NER) is one of the fundamental tasks in natural language processing. In the medical domain, there have been a number of studies on NER in English clinical notes; however, very limited NER research has been carried out on clinical notes written in Chinese. The goal of this study was to systematically investigate features and machine learning algorithms for NER in Chinese clinical text. MATERIALS AND METHODS: We randomly selected 400 admission notes and 400 discharge summaries from Peking Union Medical College Hospital in China. For each note, four types of entity-clinical problems, procedures, laboratory test, and medications-were annotated according to a predefined guideline. Two-thirds of the 400 notes were used to train the NER systems and one-third for testing. We investigated the effects of different types of feature including bag-of-characters, word segmentation, part-of-speech, and section information, and different machine learning algorithms including conditional random fields (CRF), support vector machines (SVM), maximum entropy (ME), and structural SVM (SSVM) on the Chinese clinical NER task. All classifiers were trained on the training dataset and evaluated on the test set, and micro-averaged precision, recall, and F-measure were reported. RESULTS: Our evaluation on the independent test set showed that most types of feature were beneficial to Chinese NER systems, although the improvements were limited. The system achieved the highest performance by combining word segmentation and section information, indicating that these two types of feature complement each other. When the same types of optimized feature were used, CRF and SSVM outperformed SVM and ME. More specifically, SSVM achieved the highest performance of the four algorithms, with F-measures of 93.51% and 90.01% for admission notes and discharge summaries, respectively.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Inteligencia Artificial , China , Humanos , Admisión del Paciente , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA