Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Microbiologyopen ; 13(4): e1433, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190020

RESUMEN

Carbon and chlorine isotope effects for biotransformation of chloroform by different microbes show significant variability. Reductive dehalogenases (RDase) enzymes contain different cobamides, affecting substrate preferences, growth yields, and dechlorination rates and extent. We investigate the role of cobamide type on carbon and chlorine isotopic signals observed during reductive dechlorination of chloroform by the RDase CfrA. Microcosm experiments with two subcultures of a Dehalobacter-containing culture expressing CfrA-one with exogenous cobamide (Vitamin B12, B12+) and one without (to drive native cobamide production)-resulted in a markedly smaller carbon isotope enrichment factor (εC, bulk) for B12- (-22.1 ± 1.9‰) compared to B12+ (-26.8 ± 3.2‰). Both cultures exhibited significant chlorine isotope fractionation, and although a lower εCl, bulk was observed for B12- (-6.17 ± 0.72‰) compared to B12+ (-6.86 ± 0.77‰) cultures, these values are not statistically different. Importantly, dual-isotope plots produced identical slopes of ΛCl/C (ΛCl/C, B12+ = 3.41 ± 0.15, ΛCl/C, B12- = 3.39 ± 0.15), suggesting the same reaction mechanism is involved in both experiments, independent of the lower cobamide bases. A nonisotopically fractionating masking effect may explain the smaller fractionations observed for the B12- containing culture.


Asunto(s)
Biotransformación , Cloroformo , Vitamina B 12 , Cloroformo/metabolismo , Vitamina B 12/metabolismo , Cloro/metabolismo , Isótopos de Carbono/metabolismo , Cobamidas/metabolismo
2.
Plant Cell Environ ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189985

RESUMEN

Understanding the dynamics of δ13C and δ18O in modern resin is crucial for interpreting (sub)fossilized resin records and resin production dynamics. We measured the δ13C and δ18O offsets between resin acids and their precursor molecules in the top-canopy twigs and breast-height stems of mature Pinus sylvestris trees. We also investigated the physiological and environmental signals imprinted in resin δ13C and δ18O at an intra-seasonal scale. Resin δ13C was c. 2‰ lower than sucrose δ13C, in both twigs and stems, likely due to the loss of 13C-enriched C-1 atoms of pyruvate during isoprene formation and kinetic isotope effects during diterpene synthesis. Resin δ18O was c. 20‰ higher than xylem water δ18O and c. 20‰ lower than δ18O of water-soluble carbohydrates, possibly caused by discrimination against 18O during O2-based diterpene oxidation and 35%-50% oxygen atom exchange with water. Resin δ13C and δ18O recorded a strong signal of soil water potential; however, their overall capacity to infer intraseasonal environmental changes was limited by their temporal, within-tree and among-tree variations. Future studies should validate the potential isotope fractionation mechanisms associated with resin synthesis and explore the use of resin δ13C and δ18O as a long-term proxy for physiological and environmental changes.

3.
J Environ Manage ; 366: 121893, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025004

RESUMEN

This study aims to identify sources of groundwater contamination in a refinery area using integrated compound-specific stable isotope analysis (CSIA), oil fingerprinting techniques, hydrogeological data, and distillation analysis. The investigations focused on determination of the origin of benzene, toluene, ethylbenzene, and xylenes (BTEX), and aliphatic hydrocarbons as well. Groundwater and floating oil samples were collected from extraction wells for analysis. Results indicate presence of active leaks in both the northern and southern zones. In the northern zone, toluene was found to primarily originate from oil products like aviation turbine kerosene (ATK or aviation fuel), kerosene, regular gasoline, and diesel fuel. Additionally, stable isotope ratios of carbon and hydrogen for ethylbenzene, o-xylene (ortho xylene) and p-xylene (para xylene) in zone A suggested the pollution originated from gasoline within the northern zone. The origin of super gasoline (with higher octane) identified in southern zone using δ13C and δ2H values of toluene in the floating oil and groundwater samples. Further, biodegradation of toluene likely occurred in southern zone according to δ13C and δ2H. The findings underscore the critical importance of integrating CSIA and fingerprinting techniques to effectively address the challenges of source identification and relying solely on each method independently is insufficient. Accordingly, comparing the GC-MS results of floating oil samples with ATK and jet fuel (JP4) standards can be effectively utilized for source differentiation. However, this method showed no practical application to distinguish different types of diesel or gasoline. The accuracy and reliability of source identification of BTEX compounds may significantly improve when hydrogeological data incorporates with stable isotopes analysis. Additionally, the results of this study will elevate the procedures for fuel-related contaminants source identification of the polluted groundwater that is crucial to develop effective remediation strategies.


Asunto(s)
Benceno , Agua Subterránea , Tolueno , Contaminantes Químicos del Agua , Xilenos , Agua Subterránea/química , Xilenos/análisis , Benceno/análisis , Tolueno/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Derivados del Benceno/análisis
4.
New Phytol ; 244(1): 21-31, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39021246

RESUMEN

Even though they share many thematical overlaps, plant metabolomics and stable isotope ecology have been rather separate fields mainly due to different mass spectrometry demands. New high-resolution bioanalytical mass spectrometers are now not only offering high-throughput metabolite identification but are also suitable for compound- and intramolecular position-specific isotope analysis in the natural isotope abundance range. In plant metabolomics, label-free metabolic pathway and metabolic flux analysis might become possible when applying this new technology. This is because changes in the commitment of substrates to particular metabolic pathways and the activation or deactivation of others alter enzyme-specific isotope effects. This leads to differences in intramolecular and compound-specific isotope compositions. In plant isotope ecology, position-specific isotope analysis in plant archives informed by metabolic pathway analysis could be used to reconstruct and separate environmental impacts on complex metabolic processes. A technology-driven linkage between the two disciplines could allow us to extract information on environment-metabolism interaction from plant archives such as tree rings but also within ecosystems. This would contribute to a holistic understanding of how plants react to environmental drivers, thus also providing helpful information on the trajectories of the vegetation under the conditions to come.


Asunto(s)
Ecología , Análisis de Flujos Metabólicos , Metabolómica , Plantas , Metabolómica/métodos , Plantas/metabolismo , Análisis de Flujos Metabólicos/métodos , Isótopos/metabolismo , Archivos , Ecosistema , Marcaje Isotópico/métodos
5.
J Hazard Mater ; 475: 134927, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885586

RESUMEN

Herein, we investigated the trophic transfer of mercury (Hg) through food chains in different habitats (namely aquatic, riparian, and terrestrial) through bulk stable isotope analysis of nitrogen (δ15Nbulk) and compound-specific isotope analysis of nitrogen in amino acids (δ15NAA) using bird feathers and their potential food sources from a Hg-contaminated site in southwest China. Results showed similar δ15Nphe for water birds (4.7 ± 2.6 ‰) and aquatic food sources (5.2 ± 2.1 ‰) and for land-based food sources (10.1 ± 0.4 ‰) and terrestrial birds (11.6 ± 3.0 ‰), verifying δ15Nphe as a potential discriminant indicator for different food sources. The trophic positions (TPs) of most organisms based on δ15Nbulk (TPbulk) tended to overestimate compared with those based on δ15NAA (TPAA), especially for predators (such as kingfisher: ΔTP = 1.3). Additionally, significant differences were observed in the aquatic, riparian, and terrestrial food webs between trophic magnification slope (TMS)bulk and TMSAA (p < 0.05). The trophic magnification factor (TMF)AA-multiple based on multiple-AAs in three food webs were higher than the TMFAA and TMFbulk, probably because of the greater variation of δ15Nbaseline, complex food sources or the notably different in individual organisms. Altogether, our results improve the understanding of Hg trophic transfer in aquatic, riparian, and terrestrial food webs.


Asunto(s)
Aminoácidos , Aves , Monitoreo del Ambiente , Plumas , Cadena Alimentaria , Mercurio , Isótopos de Nitrógeno , Animales , Mercurio/análisis , Aminoácidos/química , Aminoácidos/análisis , Plumas/química , Ecosistema , China , Contaminantes Químicos del Agua/análisis
6.
Environ Res ; 256: 119223, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810830

RESUMEN

Compound-specific isotope analysis of nitrogen in amino acids (CSIA-AA, δ15NAA) has gained increasing popularity for elucidating energy flow within food chains and determining the trophic positions of various organisms. However, there is a lack of research on the impact of hydrolysis conditions, such as HCl concentration and hydrolysis time, on δ15NAA analysis in biota samples. In this study, we investigated two HCl concentrations (6 M and 12 M) and four hydrolysis times (2 h, 6 h, 12 h, and 24 h) for hydrolyzing and derivatizing AAs in reference materials (Tuna) and biological samples of little egret (n = 4), night heron (n = 4), sharpbelly (n = 4) and Algae (n = 1) using the n-pivaloyl-iso-propyl (NPIP) ester approach. A Dowex cation exchange resin was used to purify amino acids before derivatization. We then determined δ15NAA values using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The results revealed no significant differences (p > 0.05) in δ15NAA values among samples treated with different HCl concentrations or hydrolysis times, particularly for δ15NGlx (range: 21.0-23.5‰) and δ15NPhe (range: 4.3-5.4‰) in Tuna (12 M). Trophic positions (TPs) calculated based on δ15NAA at 2 h (little egret: 2.9 ± 0.1, night heron: 2.8 ± 0.1, sharpbelly: 2.0 ± 0.1 and Algae: 1.3 ± 0.2) were consistent with those at 24 h (3.1 ± 0.1, 2.8 ± 0.1, 2.2 ± 0.1 and 1.1 ± 0.1, respectively), suggesting that a 2-h hydrolysis time and a 6 M HCl concentration are efficient pretreatment conditions for determining δ15NAA and estimating TP. Compared to the currently used hydrolysis conditions (24 h, 6 M), the proposed conditions (2 h, 6 M) accelerated the δ15NAA assay, making it faster, more convenient, and more efficient. Further research is needed to simplify the operational processes and reduce the time costs, enabling more efficient applications of CSIA-AA.


Asunto(s)
Aminoácidos , Cadena Alimentaria , Isótopos de Nitrógeno , Hidrólisis , Aminoácidos/análisis , Aminoácidos/química , Animales , Isótopos de Nitrógeno/análisis , Ácido Clorhídrico/química , Atún
7.
Sci Total Environ ; 929: 172298, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615778

RESUMEN

A 30-month pilot study was conducted to evaluate the potential of in-situ metal(loid) removal through biostimulation of sulfate-reducing processes. The study took place at an industrial site in Flanders, Belgium, known for metal(loid) contamination in soil and groundwater. Biostimulation involved two incorporations of an organic substrate (emulsified vegetable oil) as electron donor and potassium bicarbonate to raise the pH of the groundwater by 1-1.5 units. The study focused on the most impacted permeable fine sand aquifer (8-9 m below groundwater level) confined by layers of non-permeable clay. The fine sands exhibited initially oxic conditions (50-200 mV), an acidic pH of 4.5 and sulfate concentrations ranging from 600 to 800 mg/L. At the central monitoring well, anoxic conditions (-200 to -400 mV) and a pH of 5.9 established shortly after the second substrate and reagent injection. Over the course of 12 months, there was a significant decrease in the concentration of arsenic (from 2500 to 12 µg/L), nickel (from 360 to <2 µg/L), zinc (from 78,000 to <2 µg/L), and sulfate (from 930 to 450 mg/L). Low levels of metal(loid)s were still present after 34 months (end of study). Mineralogical analysis indicated that the precipitates formed were amorphous in nature. Evidence for biologically driven metal(loid) precipitation was provided by compound specific stable isotope analysis of sulfate. In addition, changes in microbial populations were assessed using next-generation sequencing, revealing stimulation of native sulfate-reducing bacteria. These results highlight the potential of biostimulation for long-term in situ metal(loid) plume treatment/containment.


Asunto(s)
Sulfatos , Contaminantes Químicos del Agua , Bélgica , Sulfatos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Agua Subterránea/química , Metales/química , Metales/análisis , Contaminantes del Suelo/análisis , Proyectos Piloto , Biodegradación Ambiental , Precipitación Química
8.
Environ Pollut ; 346: 123650, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402932

RESUMEN

Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored. The results indicated that the PCBs were mainly dechlorinated via removing their double-flanked meta-chlorine, with their first-order kinetic constants following the order of PCB132 > PCB174 > PCB85 > PCB183 > PCB138. However, PCBs occurred great loss of stoichiometric mass balance during microbial transformation, suggesting the generation of other non-dehalogenation products and/or stable intermediates. The preferential transformation of (-)-atropisomers and generation of (+)-atropisomers were observed during PCB132 and PCB174 biotransformation with the enantiomeric enrichment factors of -0.8609 ± 0.1077 and -0.4503 ± 0.1334 (first half incubation times)/-0.1888 ± 0.1354 (second half incubation times), respectively, whereas no enantioselectivity occurred during PCB183 biotransformation. More importantly, although there was no carbon and chlorine isotope fractionation occurring for studied substrates, the δ13C values of dechlorination products, including PCB47 (-28.15 ± 0.35‰ âˆ¼ -27.77 ± 0.20‰), PCB91 (-36.36 ± 0.09‰ âˆ¼ -34.71 ± 0.49‰), and PCB149 (-28.08 ± 0.26‰ âˆ¼ -26.83 ± 0.10‰), were all significantly different from those of their corresponding substrates (PCB85: -30.81 ± 0.02‰ âˆ¼ -30.22 ± 0.21‰, PCB132: -33.57 ± 0.15‰ âˆ¼ -33.13 ± 0.14‰, and PCB174: -26.30 ± 0.09‰ âˆ¼ -26.01 ± 0.07‰), which further supported the generation of other non-dehalogenation products and/or stable intermediates with enrichment or depletion of 13C. These findings provide deeper insights into the anaerobic microbial transformation behaviors of PCBs.


Asunto(s)
Chloroflexi , Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Chloroflexi/metabolismo , Biodegradación Ambiental , Cloro/metabolismo , Anaerobiosis , Biotransformación , Carbono/metabolismo , Isótopos/metabolismo , Dehalococcoides
9.
Sci Total Environ ; 918: 170506, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307285

RESUMEN

Groundwater contamination from abandoned pesticide sites is a prevalent issue in China. To address this problem, natural attenuation (NA) of pollutants has been increasingly employed as a management strategy for abandoned pesticide sites. However, limited studies have focused on the long-term NA process of co-existing organic pollutants in abandoned pesticide sites by an integrated approach. In this study, the NA of benzene, toluene, ethylbenzene, and xylene (BTEX), and chlorobenzenes (CBs) in groundwater of a retired industry in China was systematically investigated during the monitoring period from June 2016 to December 2021. The findings revealed that concentrations of BTEX and CBs were effectively reduced, and their NA followed first-order kinetics with different rate constants. The sulfate-reducing bacteria, nitrate-reducing bacteria, fermenting bacteria, aromatic hydrocarbon metabolizing bacteria, and reductive dechlorinating bacteria were detected in groundwater. It was observed that distinct environmental parameters played a role in shaping both overall and key bacterial communities. ORP (14.72%) and BTEX (12.89%) were the main drivers for variations of the whole and key functional microbial community, respectively. Moreover, BTEX accelerated reductive dechlorination. Furthermore, BTEX and CBs exhibited significant enrichment of 13C, ranging from +2.9 to +27.3‰, demonstrating their significance in situ biodegradation. This study provides a scientific basis for site management.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Plaguicidas , Contaminantes Químicos del Agua , Benceno/análisis , Tolueno/análisis , Xilenos/análisis , Clorobencenos/metabolismo , Plaguicidas/análisis , Derivados del Benceno/análisis , Isótopos/análisis , Bacterias/metabolismo , Contaminantes Ambientales/análisis , Biodegradación Ambiental , Contaminantes Químicos del Agua/análisis
10.
J Am Soc Mass Spectrom ; 34(12): 2711-2721, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37883681

RESUMEN

Organochlorinated pesticides are highly persistent organic pollutants having important adverse effects in the environment. To study their fate, compound-specific isotope analysis (CSIA) may be used to investigate their degradation pathways and mechanisms but is currently limited to 13C isotope ratios. The assessment of 37Cl isotope ratios from mass spectra is complicated by the large number of isotopologues of polychlorinated compounds. For method development, chlordecone (C10Cl10O2H2; hydrate form), an organochlorine insecticide that led to severe contamination of soils and aquatic ecosystems of the French West Indies, was taken as a model analyte. Chlorine isotope analysis of chlordecone hydrate was evaluated using high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), enabling smooth ionization to detect the molecular ion. First, a new evaluation scheme is presented to correct for multiple isotope presence in polychlorinated compounds. The scheme is based on probability calculations of the most frequent isotopologues, distributions by binomial probability functions, and corrections for the presence of nonchlorine heavy isotopes. Second, mobile-phase modifiers, ionization energy (sampling cone tension) and scan time were optimized for accurate chlorine isotope ratios. Chlordecone standard samples were measured up to 10-fold and bracketed with a second chlordecone external standard. δ37Cl values were obtained after conversion to the SMOC scale by a two-point calibration. The robustness of the analysis method and evaluation scheme were tested and gave satisfactory results with standard errors (σm) of ±0.34‰ for precision and ±0.89‰ for long-term accuracy of chlorine isotope ratios of chlordecone hydrate. This work opens perspectives for applications of the C-Cl CSIA approach to investigate the fate of highly toxic and low reactive polychlorinated compounds in the environment.

11.
Environ Pollut ; 337: 122546, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37709122

RESUMEN

This study utilized both conventional molecular analysis and compound-specific isotopic techniques to identify the sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Ulsan Bay, South Korea. The concentrations of 15 traditional and 11 emerging PAHs were determined in sediments from 21 source sites and 26 bay sites. The concentrations and compositions of traditional and emerging PAHs varied significantly, even at sites close to the source areas. The results obtained from diagnostic ratios and the positive matrix factorization model for source identification were inconsistent in adjacent source areas. The δ13C profiles of PAHs, such as phenanthrene (Phe), fluoranthene (Fl), pyrene (Py), and benz[a]anthracene (BaA) in the sediments showed distinct features depending on the surrounding sources. In urban sediments, lighter δ13CPhe values were observed (mean: -25.1‰), whereas relatively heavier values of δ13CPy were found in petroleum industry areas (mean: -23.4‰). The Bayesian isotope mixing model indicates that the predominant source of PAHs in Ulsan Bay sediments was the petroleum industry (45%), followed by the non-ferrous metals industry (30%), automobile industry (18%), and urban areas (6.3%). These results demonstrated the utility of stable isotopes in assessing the sources and contributions of PAHs in small-scale regions. However, there are still limitations in compound-specific isotope analysis of PAHs, including insufficient end-members for each source, difficulty in analysis, and the influence of non-point sources; thus, further study is needed to expand its application.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Teorema de Bayes , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Isótopos/análisis
12.
Environ Sci Technol ; 57(38): 14319-14329, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37712441

RESUMEN

Biocides are added to facade paints and renders to prevent algal and fungal growth. The emissions of biocides and their transformation products from building facades during wind-driven rain can contaminate surface waters, soil, and groundwater. Although the emissions of biocide transformation products may be higher than those of the parent biocide, knowledge of the emissions of transformation products over time is scarce. Combining field- and lab-scale experiments, we showed that solar irradiation on facades controls the formation of transformation products and can be used with runoff volume to estimate the long-term emissions of terbutryn transformation products from facades. The slow (t1/2 > 90 d) photodegradation of terbutryn in paint under environmental conditions was associated with insignificant carbon isotope fractionation (Δδ13C < 2 ‰) and caused 20% higher emission of terbutryn-sulfoxide than terbutryn in leachates from facades. This indicated continuous terbutryn diffusion toward the paint surface, which favored terbutryn photodegradation and the concomitant formation of transformation products over time. The emissions of terbutryn transformation products (77 mg m-2) in facade leachates, modeled based on irradiation and facade runoff, were predicted to exceed those of terbutryn (42 mg m-2) by nearly 2-fold after eight years. Overall, this study provides a framework to estimate and account for the long-term emissions of biocide transformation products from building facades to improve the assessment of environmental risks.


Asunto(s)
Fraccionamiento Químico , Agua Subterránea , Isótopos de Carbono , Difusión
13.
Sci Total Environ ; 900: 165767, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37506910

RESUMEN

Pesticide degradation in wetland systems intercepting agricultural runoff is often overlooked and mixed with other dissipation processes when assessing pesticide concentrations alone. This study focused on the potential of compound-specific isotope analysis (CSIA) to estimate pesticide degradation in a stormwater wetland receiving pesticide runoff from a vineyard catchment. The fungicide dimethomorph (DIM), with diastereoisomers E and Z, was the prevalent pesticide in the runoff entering the wetland from June to September 2020. DIM Z, the most commonly detected isomer, exhibited a significant change (Δ(13C) > 3 ‰) in its carbon isotopic composition in the wetland water compared to the runoff and commercial formulation, which indicated degradation. Laboratory DIM degradation assays, including photodegradation and biodegradation in oxic wetland water with and without aquatic plants and in anoxic sediments, indicated that DIM degradation mainly occurred in the wetland sediments. The rapid degradation of both DIM isomers (E:t1/2 = 1.2 ± 0.6, Z: t1/2 = 1.5 ± 0.8 days) in the wetland sediment led to significant carbon isotopic fractionation (εDIM-E = -3.0 ± 0.6 ‰, εDIM-Z = -2.0 ± 0.2 ‰). In contrast, no significant isotope fractionation occurred during DIM photodegradation, despite the rapid isomerization of the E isomer to the Z isomer and a half-life of 15.3 ± 2.2 days for both isomers. DIM degradation was slow (E: t1/2 = 56-62 days, Z: t1/2 = 82-103 days) in oxic water with plants, while DIM persisted (120 days) in water without plants. DIM CSIA was thus used to evaluate the in situ biodegradation of DIM Z in the wetland. The DIM Z degradation estimates based on a classical concentration mass balance (86-94 %) were slightly higher than estimates based on the isotopic mass balance (61-68 %). Altogether, this study shows the potential of CSIA to conservatively evaluate pesticide degradation in wetland systems, offering a reliable alternative to classical labor-intensive mass balance approaches.).


Asunto(s)
Fungicidas Industriales , Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/análisis , Fungicidas Industriales/análisis , Humedales , Isótopos de Carbono/análisis , Biodegradación Ambiental , Plantas , Contaminantes Químicos del Agua/análisis , Agua/análisis
14.
Water Res ; 243: 120360, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481998

RESUMEN

1,2,5,6-tetrabromocyclooctane (TBCO) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), as safer alternatives to traditional brominated flame retardants, have been extensively detected in various environmental media and pose emerging risks. However, much less is known about their fate in the environment. Anaerobic microbial transformation is a key pathway for the natural attenuation of contaminants. This study investigated, for the first time, the microbial transformation behaviors of ß-TBCO and DPTE by Dehalococcoides mccartyi strain CG1. The results indicated that both ß-TBCO and DPTE could be easily transformed by D. mccartyi CG1 with kobs values of 0.0218 ± 0.0015 h-1 and 0.0089 ± 0.0003 h-1, respectively. In particular, ß-TBCO seemed to undergo dibromo-elimination and then epoxidation to form 4,5-dibromo-9-oxabicyclo[6.1.0]nonane, while DPTE experienced debromination at the benzene ring (ortho-bromine being removed prior to para-bromine) rather than at the carbon chain. Additionally, pronounced carbon and bromine isotope fractionations were observed during biotransformation of ß-TBCO and DPTE, suggesting that C-Br bond breaking is the rate-limiting step of their biotransformation. Finally, coupled with identified products and isotope fractionation patterns, ß-elimination (E2) and Sn2-nucleophilic substitution were considered the most likely microbial transformation mechanisms for ß-TBCO and DPTE, respectively. This work provides important information for assessing the potential of natural attenuation and environmental risks of ß-TBCO and DPTE.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Hidrocarburos Bromados/química , Cinética , Anaerobiosis , Bromo , Biotransformación , Isótopos
15.
Environ Sci Technol ; 57(32): 11958-11966, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37515553

RESUMEN

Aminopolyphosphonates (APPs) are strong chelating agents with growing use in industrial and household applications. In this study, we investigated the oxidation of the bisphosphonate iminodi(methylene phosphonate) (IDMP) - a major transformation product (TP) of numerous commercially used APPs and a potential precursor for aminomethylphosphonate (AMPA) - on manganese dioxide (MnO2). Transformation batch experiments at pH 6 revealed AMPA and phosphate as main TPs, with a phosphorus mass balance of 80 to 92% throughout all experiments. Our results suggest initial cleavage of the C-P bond and formation of the stable intermediate N-formyl-AMPA. Next, C-N bond cleavage leads to the formation of AMPA, which exhibits lower reactivity than IDMP. Reaction rates together with IDMP and Mn2+ sorption data indicate formation of IDMP-Mn2+ surface bridging complexes with progressing MnO2 reduction, leading to the passivation of the mineral surface regarding IDMP oxidation. Compound-specific stable carbon isotope analysis of IDMP in both sorbed and aqueous fractions further supported this hypothesis. Depending on the extent of Mn2+ surface concentration, the isotope data indicated either sorption of IDMP to the mineral surface or electron transfer from IDMP to MnIV to be the rate-limiting step of the overall reaction. Our study sheds further light on the complex surface processes during MnO2 redox reactions and reveals abiotic oxidative transformation of APPs by MnO2 as a potential process contributing to widespread elevated AMPA concentrations in the environment.


Asunto(s)
Organofosfonatos , Óxidos , Óxidos/química , Compuestos de Manganeso/química , Manganeso/química , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Oxidación-Reducción , Minerales , Isótopos
16.
Pharmacol Ther ; 248: 108437, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37201738

RESUMEN

Docosahexaenoic acid (DHA, 22:6n-3) accretion in brain phospholipids is critical for maintaining the structural fluidity that permits proper assembly of protein complexes for signaling. Furthermore, membrane DHA can be released by phospholipase A2 and act as a substrate for the synthesis of bioactive metabolites that regulate synaptogenesis, neurogenesis, inflammation, and oxidative stress. Thus, brain DHA is consumed through multiple pathways including mitochondrial ß-oxidation, autoxidation to neuroprostanes, as well as enzymatic synthesis of bioactive metabolites including oxylipins, synaptamide, fatty-acid amides, and epoxides. By using models developed by Rapoport and colleagues, brain DHA loss has been estimated to be 0.07-0.26 µmol DHA/g brain/d. Since ß-oxidation of DHA in the brain is relatively low, a large portion of brain DHA loss may be attributed to the synthesis of autoxidative and bioactive metabolites. In recent years, we have developed a novel application of compound specific isotope analysis to trace DHA metabolism. By the use of natural abundance in 13C-DHA in the food supply, we are able to trace brain phospholipid DHA loss in free-living mice with estimates ranging from 0.11 to 0.38 µmol DHA/g brain/d, in reasonable agreement with previous methods. This novel fatty acid metabolic tracing methodology should improve our understanding of the factors that regulate brain DHA metabolism.


Asunto(s)
Encéfalo , Ácidos Docosahexaenoicos , Ratones , Animales , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Transducción de Señal , Estrés Oxidativo
17.
Sci Total Environ ; 875: 162638, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36894091

RESUMEN

Rapidly changing land use patterns and frequent extreme weather events have resulted in an increased sediment flux to freshwater systems globally, highlighting the need for land-use-based sediment source fingerprinting. Application of variability in hydrogen isotope compositions (δ2H values) of vegetation-specific biomarkers from soils and sediments is relatively underexplored for land-use-based freshwater suspended sediment (SS) source fingerprinting, but has the potential to complement the information from routinely applied carbon isotope analysis and provide new insights. We analysed δ2H values of long-chain fatty acids (LCFAs) as vegetation-specific biomarkers in source soils and SS collected from the mixed land use Tarland catchment (74 km2) in NE Scotland, to identify stream SS sources and quantify their contributions to SS. Plant growth form was the primary control on source soils LCFAs (n-C26:0, n-C28:0, n-C30:0) δ2H variability, while the isotopic composition of source water had no significant control. Forest and heather moorland soils covered with dicotyledonous and gymnosperm species were differentiated from arable land and grasslands soils covered with monocotyledonous species. SS samples collected for fourteen months from the Tarland catchment with a nested sampling approach showed monocot-based land use (cereal crops, grassland) to be the major source of SS with 71 ± 11% contribution on catchment-wide scale averaged throughout the sampling period. Storm events after a dry summer period and sustained high flow conditions in the streams during autumn and early winter suggested enhanced connectivity of more distant forest and heather moorland land uses covering relatively steep topography. This was shown by an increased contribution (44 ± 8%) on catchment-wide scale from dicot and gymnosperm-based land uses during the corresponding period. Our study demonstrated successful application of vegetation-specificity in δ2H values of LCFAs for land-use-based freshwater SS source fingerprinting in a mesoscale catchment where δ2H values of LCFAs were primarily controlled by plant growth forms.


Asunto(s)
Monitoreo del Ambiente , Ríos , Suelo , Isótopos de Carbono/análisis , Ácidos Grasos , Sedimentos Geológicos/análisis , Agua Dulce/química , Monitoreo del Ambiente/métodos
18.
Environ Int ; 174: 107891, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963155

RESUMEN

Anthropogenic mercury (Hg) emissions have increased significantly since the Industrial Revolution, resulting in severe health impacts to humans. The consumptions of fish and rice were primary human methylmercury (MeHg) exposure pathways in Asia. However, the lifecycle from anthropogenic Hg emissions to human MeHg exposure is not fully understood. In this study, a recently developed approach, termed MeHg Compound-Specific Isotope Analysis (CSIA), was employed to track lifecycle of Hg in four typical Hg-emission areas. Distinct Δ199Hg of MeHg and inorganic Hg (IHg) were observed among rice, fish and hair. The Δ199Hg of MeHg averaged at 0.07 ± 0.15 ‰, 0.80 ± 0.55 ‰ and 0.43 ± 0.29 ‰ in rice, fish and hair, respectively, while those of IHg averaged at - 0.08 ± 0.24 ‰, 0.85 ± 0.43 ‰ and - 0.28 ± 0.68 ‰. In paddy ecosystem, Δ199Hg of MeHg in rice showed slightly positive shifts (∼0.2 ‰) from those of IHg, and comparable Δ199Hg of IHg between rice grain and raw/processed materials (coal, Hg ore, gold ore and sphalerite) were observed. Simultaneously, it was proved that IHg in fish muscle was partially derived from in vivo demethylation of MeHg. By a binary model, we estimated the relative contributions of rice consumption to human MeHg exposure to be 84 ± 14 %, 58 ± 26 %, 52 ± 20 % and 34 ± 15 % on average in Hg mining area, gold mining area, zinc smelting area and coal-fired power plant area, respectively, and positive shifts of δ202HgMeHg from fish/rice to human hair occurred during human metabolic processes. Therefore, the CSIA approach can be an effective tool for tracking Hg biogeochemical cycle and human exposure, from which new scientific knowledge can be generated to support Hg pollution control policies and to protect human health.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Animales , Humanos , Mercurio/análisis , Ecosistema , Monitoreo del Ambiente , Compuestos de Metilmercurio/análisis , Isótopos/análisis , Oryza/metabolismo , Peces/metabolismo , Carbón Mineral/análisis
19.
Proc Biol Sci ; 290(1993): 20221330, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36809804

RESUMEN

Determining the degree to which humans relied on coastal resources in the past is key for understanding long-term social and economic development, as well as for assessing human health and anthropogenic impacts on the environment. Prehistoric hunter-gatherers are often assumed to have heavily exploited aquatic resources, especially those living in regions of high marine productivity. For the Mediterranean, this view has been challenged, partly by the application of stable isotope analysis of skeletal remains which has shown more varied coastal hunter-gatherer diets than in other regions, perhaps due to its lower productivity. By undertaking a more specific analysis of amino acids from bone collagen of 11 individuals from one of the oldest and best-known Mesolithic cemeteries in the Mediterranean, at El Collado, Valencia, we show that high levels of aquatic protein consumption were achieved. By measuring both carbon and nitrogen in amino acids, we conclude that some of the El Collado humans relied heavily on local lagoonal fish and possibly shellfish, rather than open marine species. By contrast to previous suggestions, this study demonstrates that the north-western coast of the Mediterranean basin could support maritime-oriented economies during the Early Holocene.


Asunto(s)
Aminoácidos , Isótopos , Animales , Humanos , Nitrógeno , Colágeno/química , Carbono
20.
Environ Sci Technol ; 57(5): 1949-1958, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36700533

RESUMEN

Brominated organic compounds such as 1,2-dibromoethane (1,2-DBA) are highly toxic groundwater contaminants. Multi-element compound-specific isotope analysis bears the potential to elucidate the biodegradation pathways of 1,2-DBA in the environment, which is crucial information to assess its fate in contaminated sites. This study investigates for the first time dual C-Br isotope fractionation during in vivo biodegradation of 1,2-DBA by two anaerobic enrichment cultures containing organohalide-respiring bacteria (i.e., either Dehalococcoides or Dehalogenimonas). Different εbulkC values (-1.8 ± 0.2 and -19.2 ± 3.5‰, respectively) were obtained, whereas their respective εbulkBr values were lower and similar to each other (-1.22 ± 0.08 and -1.2 ± 0.5‰), leading to distinctly different trends (ΛC-Br = Δδ13C/Δδ81Br ≈ εbulkC/εbulkBr) in a dual C-Br isotope plot (1.4 ± 0.2 and 12 ± 4, respectively). These results suggest the occurrence of different underlying reaction mechanisms during enzymatic 1,2-DBA transformation, that is, concerted dihaloelimination and nucleophilic substitution (SN2-reaction). The strongly pathway-dependent ΛC-Br values illustrate the potential of this approach to elucidate the reaction mechanism of 1,2-DBA in the field and to select appropriate εbulkC values for quantification of biodegradation. The results of this study provide valuable information for future biodegradation studies of 1,2-DBA in contaminated sites.


Asunto(s)
Dehalococcoides , Dibromuro de Etileno , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Dehalococcoides/metabolismo , Compuestos Orgánicos , Biodegradación Ambiental , Fraccionamiento Químico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA