Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.591
Filtrar
1.
J Ethnopharmacol ; 336: 118695, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39142619

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional use of plants for medicinal purposes, called phytomedicine, has been known to provide relief from pain. In Bangladesh, the Chakma indigenous community has been using Allophylus villosus and Mycetia sinensis to treat various types of pain and inflammation. AIM OF THE STUDY: The object of this research is to evaluate the effectiveness of these plants in relieving pain and their antioxidant properties using various approaches such as in vitro, in vivo, and computational techniques. Additionally, the investigation will also analyse the phytochemicals present in these plants. MATERIALS AND METHODS: We conducted in vivo analgesic experiment on Swiss albino mice and in-silico inhibitory activities on COX-2 & 15-LOX-2 enzymes. Assessment of DPPH, Anti Radical Activities (ARA), FRAP, H2O2 Free Radical Scavenging, Reducing the power of both plants performed significant % inhibition with tolerable IC50. Qualitative screening of functional groups of phytochemicals was précised by FTIR and GC-MS analysis demonstrated phytochemical investigations. RESULTS: The ethyl acetate (EtOAc) fractioned Mycetia sinensis extract as well as the ethanoic extract and all fractioned extracts of Allophylus villosus have reported a significant percentage (%) of writhing inhibition (p < 0.05) with the concentrated doses 250 mg as well as 500 mg among the Swiss albino mice for writhing observation of analgesic effect. In the silico observation, a molecular-docking investigation has performed according to GC-MS generated 43 phyto-compounds of both plants to screen their binding affinity by targeting COX-2 and 15-LOX-2 enzymes. Consequently, in order to assess and ascertain the effectiveness of the sorted phytocompounds, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) investigation, DFT (Density-functional theory) by QM (Quantum mechanics), and MDS (Molecular dynamics simulation) were carried out. As the outcome, compounds like 5-(2,4-ditert-butylphenoxy)-5-oxopentanoic acid; 2,4-ditert-butylphenyl 5-hydroxypentanoate; 3,3-diphenyl-5-methyl-3H-pyrazole; 2-O-(6-methylheptan-2-yl) 1-O-octyl benzene-1,2-dicarboxylate and dioctan-3-yl benzene-1,2-dicarboxylate derived from the ethnic plant A. villosus and another ethnic plant M. sinensis extracts enchants magnificent analgesic inhibitions and performed more significant drug like activities with the targeted enzymes. CONCLUSIONS: Phytocompounds from A. villosus & M. sinensis exhibited potential antagonist activity against human 15-lipoxygenase-2 and cyclooxygenase-2 proteins. The effective ester compounds from these plants performed more potential anti-nociceptive activity which could be used as a drug in future.


Asunto(s)
Analgésicos , Antioxidantes , Extractos Vegetales , Animales , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Analgésicos/farmacología , Analgésicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratones , Masculino , Dolor/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Fitoquímicos/análisis , Ciclooxigenasa 2/metabolismo
2.
J Ethnopharmacol ; 336: 118759, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209003

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hypercholesterolemia (HLC) was a key risk factor for cardiovascular disease (CVD) characterized by elevated cholesterol levels, particularly LDL. While traditional Chinese medicine preparations Compound Danshen Pills(CDP) has been clinically used for hypercholesterolemia and coronary heart disease, its specific therapeutic effect on HLC remains understudied, necessitating further investigation into its mechanisms. AIM OF THE STUDY: The aim of this study was to explore the potential of CDP in treating HLC and elucidate its underlying mechanisms and active components. MATERIALS AND METHODS: A hypercholesterolemic lipemia rat model induced by a high-fat diet was employed. Network pharmacology combined with UHPLC-Q exactive orbitrap HRMS technique was used to predict the active components, targets and mechanisms of CDP for HLC. Histological analysis and serum biochemical assays were used to assess the therapeutic effect of CDP and its main active ingredient Sa B on hypercholesterolemic lipemia rat model. Immunofluorescence assays and western blotting were used to verify the mechanism of CDP and Sa B in the treatment of HLC. Metabolomics approach was used to demonstrate that CDP and Sa B affected the metabolic profile of HLC. RESULTS: Our findings demonstrated that both CDP and its main active ingredient Sa B significantly ameliorated hypercholesterolemic lipemic lesions, reducing levels of TC, LDL, AST, ALT, and ALP. Histological analysis revealed a decrease in lipid droplet accumulation and collagen fiber deposition in the liver, as well as reduced collagen fiber deposition in the aorta. Network pharmacology predicted potential targets such as PPARα and CYP27A1. Immunofluorescence assays and western blotting confirmed that CDP and Sa B upregulated the expression of Adipor1, PPARα and CYP27A1. Metabolomics analyses further indicated improvements in ABC transporters metabolic pathways, with differential metabolites such as riboflavin, taurine, and choline showed regression in levels after CDP treatment and riboflavin, L-Threonine, Thiamine, L-Leucine, and Adenosine showed improved expression after Sa B treatment. CONCLUSION: CDP and Sa B have been shown to alleviate high-fat diet-induced hypercholesterolemia by activating the PPAR pathway and improving hepatic lipid metabolism. Our study demonstrated, for the first time, the complex mechanism of CDP, Sa B in the treatment of hypercholesterolemia at the protein and metabolic levels and provided a new reference that could elucidate the pharmacological effects of traditional Chinese medicine on hypercholesterolemia from multiple perspectives.


Asunto(s)
Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Hipercolesterolemia , Metabolómica , Farmacología en Red , Ratas Sprague-Dawley , Salvia miltiorrhiza , Animales , Hipercolesterolemia/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Cromatografía Líquida de Alta Presión , Salvia miltiorrhiza/química , Ratas , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Canfanos , Panax notoginseng
3.
J Mass Spectrom ; 59(10): e5084, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39262149

RESUMEN

This study employs a high-dimensional consensus mass spectral (HDCMS) similarity scoring technique to discriminate isomers collected using an electron ionization mass spectrometer. The HDCMS method was previously introduced and applied to the discrimination of mass spectra of constitutional isomers, methamphetamine and phentermine, collected with direct analysis real-time mass spectrometry (DART-MS). The method formulates the problem of discriminating mass spectra in a mathematical Hilbert space and is hence called "high dimensional." It requires replicate mass spectra to build a Gaussian model and evaluate the inner products between these functions. The resulting measurement variability is used as a signature by which to discriminate spectra. In this work, HDCMS is tested on electron impact ionization (EI) mass spectra of 7 terpene and terpene-related (C10H16 and C10H14) isomers with experimental retention indices that differ by less than 30 and with traditional cosine similarity scores greater than 0.9, on a scale of 0 to 1, when compared with at least one other compound in the test set. Using identical instrument parameters, 15 replicate gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) spectra of each isomer were collected and separated into distinct library and query sets. The HDCMS algorithm discriminated each isomer, indicating the method's potential. Because the method requires replicate measurements, observations from a simple heuristic study of the number of replicates required to discriminate these isomers is presented. The paper concludes with a discussion of compound discrimination using HDCMS and the benefits and drawbacks of applying the method to EI-MS data.

4.
Ageing Res Rev ; 101: 102475, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222665

RESUMEN

Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.

5.
Phytomedicine ; 134: 156014, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39241386

RESUMEN

BACKGROUND: Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, remarkable advances have been made in vaccine development to reduce mortality. However, therapeutic interventions for COVID-19 are comparatively limited despite these intensive efforts. Furthermore, the rapid mutation capability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a characteristic of its RNA structure, has led to the emergence of multiple variants, necessitating a shift from a predominantly vaccine-centric approach to one that encompasses therapeutic strategies. 6'-Hydroxy justicidin B (6'-HJB), an arylnaphthalene lignan isolated from Justicia procumbens, a traditional Chinese medicine, is known for its antiviral properties. HYPOTHESIS/PURPOSE: The aim of the present study was to assess the effectiveness and safety of 6'-HJB against SARS-CoV-2 in order to determine its potential as a therapeutic agent against COVID-19. METHODS: The efficacy of 6'-HJB was evaluated both in vitro using Vero and Calu-3 cell lines and in vivo using ferrets. The safety assessment included toxicokinetics, safety pharmacology, and Good Laboratory Practice (GLP)-compliant toxicity evaluations following single- and repeated-dose toxicity studies in dogs. RESULTS: The anti-SARS-CoV-2 efficacy of 6'-HJB was evaluated through dose-response curve (DRC) analysis using immunofluorescence; 6'-HJB demonstrated superior inhibition of SARS-CoV-2 growth and lower cytotoxicity than remdesivir. In SARS-CoV-2-infected ferret, 6'-HJB showed efficacy comparable to that of the positive control, Truvada. Further GLP toxicity studies corroborated the safety profile of 6'-HJB. Single-dose and 4-week repeated oral toxicity studies in Beagle dogs demonstrated minimal harmful effects at the highest dosages. The lethal dose of 6'-HJB exceeded 2,000 mg kg-1 in Beagle dogs. Toxicokinetic and GLP safety pharmacology studies demonstrated no adverse effects of 6'-HJB on metabolic processes, respiratory or central nervous systems, or cardiac functions. CONCLUSION: This research highlights both the antiviral efficacy and safety profile of 6'-HJB, underscoring its potential as a novel COVID-19 treatment option. The potential of 6'-HJB was demonstrated using modern scientific methodologies and standards.

6.
Chemistry ; : e202403163, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289886

RESUMEN

We have developed a gold-catalyzed cascade reaction of aryldiynes bearing a hydrosilyl group to afford a variety of unexplored 5H-benzo[b]indeno[2,1-d]silines. The reaction system is applicable to the synthesis of bidirectionally π-extended silacycles from tetra(alkynyl)aryl compounds. Computational studies suggest that 5H-benzo[b]indeno[2,1-d]silines are formed via the insertion of a vinyl carbocation intermediate into the Si-H bond.

7.
Appl Spectrosc ; : 37028241279434, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289910

RESUMEN

Cinchonine is a quinoline alkaloid known for its antimalarial properties. Due to the advantages of using compounds of metal ions with alkaloids, a copper(II) compound with cinchonine was synthesized, and, for comparative purposes, a cadmium(II) compound with cinchonine. During the synthesis, the emerging interactions between the metal ion and cinchonine were studied. After crystallization, it was examined how the obtained compounds would interact with the model blood component, hematoporphyrin IX. Ultraviolet-visible (UV-Vis) spectroscopy, Raman spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) were used in the study. In the case of monitoring the synthesis, the best method turned out to be UV-Vis spectroscopy, combined with the possibility of two-dimensional correlation spectroscopy (2D-COS), which enabled the identification of peaks characteristic of the interactions of the cinchonine quinoline ring with metal ions. In turn, the obtained Raman spectra showed shifts of individual bands and changes in their intensity, and 2D-COS showed the sequence of formation of individual interactions, which confirmed the formation of cinchonine compounds with metals. ATR FT-IR also allowed us to compare the spectra of the substrates used in the synthesis with the crystallized compounds and thus confirm the formation of the expected compounds. Bands characteristic of π-π-stacking interactions between the quinoline ring and the tetrapyrrole ring of hematoporphyrin IX were also observed. Observed interaction with a model blood component may be important when designing drugs for antimalarial therapy.

8.
Microbiol Spectr ; : e0165824, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283133

RESUMEN

Short-chain carboxylic acids (SCCAs) that are naturally produced by microbial fermentation play an essential role in delaying microbial spoilage. SCCAs are structurally diverse, but only a few of them are routinely used in food biopreservation. This study investigated the effects of environmental pH and intrinsic properties of 21 structurally different SCCAs on the antimicrobial and antibiofilm activity against Salmonella enterica. Inhibition of SCCA toward planktonic and biofilm growth of S. enterica was higher in an acidic environment (pH 4.5) that is common in fermented products, and for SCCA that possessed both a high acid dissociation strength (pKa) (>4.0) and a positive hydrophobicity [octanol/water partition coefficient (log Kow)]. Crotonic and caproic acids were identified as SCCAs with potential as biopreservatives even at near-neutral pH. SCCA with hydrophilic groups such as lactic acid did not inhibit S. enterica at concentrations up to 50 mM, while SCCA with benzene or methyl groups or a double bond prevented S. enterica growth and biofilm formation. Stimulation of biofilm formation was observed for formic, acetic, and propionic acid close to the minimum inhibitory concentration to reduce 50% of cell density (MIC50) of planktonic cells, and for citric and isocitric acid with an MIC50 of ≥50 mM. The presence of low concentrations of formic and propionic acids during biofilm formation conferred protection during eradication possibly due to a pre-adaptation effect, yet two consecutive acid treatments were successful in eradicating biofilms if the first acid treatment was two- to threefold of the MIC50.IMPORTANCEThis study provides a systematic comparison on the antimicrobial and antibiofilm activity of more than 20 structurally different SCCAs against a common food pathogen. We tested the antimicrobial activity at controlled pH and identified the structure-dependent antimicrobial effects of SCCA without the confounding influence of acidification. The combined effect of pKa and log Kow was identified as an important feature that should be considered when deciding for a specific SCCA in the application as antimicrobial. Our results imply that additional phenomena such as the use of SCCA as substrate and cellular pre-adaption effects have to be taken into consideration. We finally present a two-step treatment as an efficient approach to eradicate biofilms, which can be applied for the disinfection of contact surfaces and manufacturing equipment. Results obtained here can serve as guidelines for application of SCCA to avoid the growth of food pathogens and/or to develop biopreserved food systems.

9.
J Sci Food Agric ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287107

RESUMEN

BACKGROUND: As unsaturated and saturated aldehydes, ketones are known to be responsible for off-odors in surimi products, and they are mainly derived from lipid oxidation. Because surimi-based products are rich in unsaturated fatty acids, they are prone to producing off-odors during the refrigeration and reheating processes, which are common treatments for leftovers. The present study investigated the color, lipid oxidation productions, fatty acid profiles and volatile components in surimi gels during refrigeration at 4 °C for 3 days with multiple reheating. RESULTS: The results revealed that the accumulation rate of hydroperoxides was higher in the refrigeration stage, whereas the decomposition rate was higher during reheating in surimi gels. Both refrigeration and reheating treatments promoted conjugated diene values, acid values and carbonyl values. Nevertheless, reheating treatment decreased tohiobarbituric acid reactive substances and whiteness. The contents of unsaturated fatty acids, especially α-linolenic acid, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, were reduced, whereas the contents of saturated fatty acids increased during refrigeration and multiple reheating. The unsaturated fatty acids were lost as a result of their oxidative deterioration. The volatile components profile showed that the accumulation of volatile components mainly occurred in the refrigeration stage. Multivariate data analysis was utilized to further clarify whether the off-odors in surimi gels were mainly generated in refrigeration. CONCLUSION: Refrigeration and reheating both contributed to lipid oxidation and the generation of volatile compounds in surimi gels, but the off-odors were mainly generated during refrigeration. This research provides a novel understanding of the formation of food odors in processing. © 2024 Society of Chemical Industry.

10.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273281

RESUMEN

Modern research has shown that Cucurbitacin B (Cu B) possesses various biological activities such as liver protection, anti-inflammatory, and anti-tumor effects. However, the majority of research has primarily concentrated on its hepatoprotective effects, with limited attention devoted to exploring its potential impact on the prostate. Our research indicates that Cu B effectively inhibits the proliferation of human prostate stromal cells (WPMY-1) and fibroblasts (HPRF), while triggering apoptosis in prostate cells. When treated with 100 nM Cu B, the apoptosis rates of WPMY-1 and HPRF cells reached 51.73 ± 5.38% and 26.83 ± 0.40%, respectively. In addition, the cell cycle assay showed that Cu B had a G2/M phase cycle arrest effect on WPMY-1 cells. Based on RNA-sequencing analysis, Cu B might inhibit prostate cell proliferation via the p53 signaling pathway. Subsequently, the related gene and protein expression levels were measured using quantitative real-time PCR (RT-qPCR), immunocytochemistry (ICC), and enzyme-linked immunosorbent assays (ELISA). Our results mirrored the regulation of tumor protein p53 (TP53), mouse double minute-2 (MDM2), cyclin D1 (CCND1), and thrombospondin 1 (THBS1) in Cu B-induced prostate cell apoptosis. Altogether, Cu B may inhibit prostate cell proliferation and correlate to the modulation of the p53/MDM2 signaling cascade.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas Proto-Oncogénicas c-mdm2 , Transducción de Señal , Triterpenos , Proteína p53 Supresora de Tumor , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Triterpenos/farmacología , Masculino , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/citología , Línea Celular
11.
Cureus ; 16(8): e66817, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280474

RESUMEN

Compound volvulus, also known as ileosigmoid knotting, is an unusual but dangerous surgical condition that causes intestinal obstruction. It is a rare condition when an area of the small intestines is twisted and interrupts the blood supply, a closed-loop obstruction that is not common for one of the causes of intestinal blockage. Still, it is essential to distinguish the difference between an ileosigmoid knot and a simple sigmoid volvulus from each other, which are managed differently. Unlike abdominal X-rays, which are often nothing but clear images, CT scans or MRIs in their place provide more precise diagnostic information to help this problem diagnosis be traced. The first step in treating the patient is to immediately do an emergency laparotomy if the case involves ileosigmoid knotting, and which specific surgical procedure to use-resectional or non-resectional-is determined by the surgeon during the operation, who is considering such scales as the extent of the affected vascular compromise, the presence of necrosis or perforation, and the overall viability of the involved intestinal loops to conduct the most sought-after therapy.  In this case, the 45-year-old male presented with insidious-onset abdominal pain, vomiting, and constipation, along with signs of dehydration and hypotension. Physical examination revealed a distended abdomen, absent bowel sounds, and elevated white blood count and lactate levels, with an erect abdominal X-ray showing a dilated bowel, suggesting acute bowel obstruction with possible ischemia. This clinical presentation is consistent with acute bowel obstruction, potentially due to ileosigmoid knotting, which requires urgent surgical intervention. Short bowel syndrome is a malabsorptive disorder characterized by the presence of less than 200 cm of the small bowel, sometimes as a result of congenital or surgical causes. This is a real problem for an individual because he or she must be cautious and watch what they eat and how much they eat fortified foodstuffs, as the decreased absorptive capability of the small intestine can restrict the body's ability to take in and make use of necessary nutrients, fluids, and electrolytes.

12.
Eco Environ Health ; 3(3): 325-337, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281068

RESUMEN

In recent years, the issue of PM2.5-O3 compound pollution has become a significant global environmental concern. This study examines the spatial and temporal patterns of global PM2.5-O3 compound pollution and exposure risks, firstly at the global and urban scale, using spatial statistical regression, exposure risk assessment, and trend analyses based on the datasets of daily PM2.5 and surface O3 concentrations monitored in 120 cities around the world from 2019 to 2022. Additionally, on the basis of the common emission sources, spatial heterogeneity, interacting chemical mechanisms, and synergistic exposure risk levels between PM2.5 and O3 pollution, we proposed a synergistic PM2.5-O3 control framework for the joint control of PM2.5 and O3. The results indicated that: (1) Nearly 50% of cities worldwide were affected by PM2.5-O3 compound pollution, with China, South Korea, Japan, and India being the global hotspots for PM2.5-O3 compound pollution; (2) Cities with PM2.5-O3 compound pollution have exposure risk levels dominated by ST + ST (Stabilization) and ST + HR (High Risk). Exposure risk levels of compound pollution in developing countries are significantly higher than those in developed countries, with unequal exposure characteristics; (3) The selected cities showed significant positive spatial correlations between PM2.5 and O3 concentrations, which were consistent with the spatial distribution of the precursors NOx and VOCs; (4) During the study period, 52.5% of cities worldwide achieved synergistic reductions in annual average PM2.5 and O3 concentrations. The average PM2.5 concentration in these cities decreased by 13.97%, while the average O3 concentration decreased by 19.18%. This new solution offers the opportunity to construct intelligent and healthy cities in the upcoming low-carbon transition.

13.
Front Genet ; 15: 1450529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290983

RESUMEN

With the innovation and advancement of artificial intelligence, more and more artificial intelligence techniques are employed in drug research, biomedical frontier research, and clinical medicine practice, especially, in the field of pharmacology research. Thus, this review focuses on the applications of artificial intelligence in drug discovery, compound pharmacokinetic prediction, and clinical pharmacology. We briefly introduced the basic knowledge and development of artificial intelligence, presented a comprehensive review, and then summarized the latest studies and discussed the strengths and limitations of artificial intelligence models. Additionally, we highlighted several important studies and pointed out possible research directions.

14.
Int J Biol Macromol ; 279(Pt 4): 135441, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260631

RESUMEN

Alginate-based packaging materials have emerged as promising alternatives to conventional petroleum-based plastics due to their biodegradability, renewability, and versatile functionalities. This review provides a comprehensive analysis of the recent advances in the development and application of alginate-based films and coatings for food packaging. The composition and fabrication methods of alginate-based packaging materials are discussed, highlighting the incorporation of various functional compounds to enhance their physicochemical properties. The mechanisms of action and the factors influencing the release and migration of active compounds from the alginate matrix are explored. The application of alginate-based packaging materials for the preservation of various food products, including meat, fish, dairy, fruits, and vegetables, is reviewed, demonstrating their effectiveness in extending shelf-life and maintaining quality. The development of alginate-based pH-sensitive indicators for intelligent food packaging is also discussed, focusing on the colorimetric response of natural pigments to spoilage-related pH changes. Furthermore, the review highlights the challenges and future perspectives of alginate-based packaging materials, emphasizing the need for novel strategies to improve their performance, sustainability, and industrial adoption.

15.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273411

RESUMEN

There are great challenges in the field of natural product isolation and purification and in the pharmacological study of oligosaccharide monomers. And these isolation and purification processes are still universal problems in the study of natural products (NPs), traditional Chinese medicine (TCM), omics, etc. The same polymer-modified materials designed for the special separation of oligosaccharides, named Sil-epoxy-PEI and Sil-chloropropyl-PEI, were synthesized via two different methods and characterized by scanning electron microscopy combined with energy spectrum analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential as well as surface area analysis, etc. Several nucleotide/nucleoside molecules with different polarities and selectivities were successfully isolated in our laboratory using stainless-steel columns filled with the synthesized material. In addition, the separation of saccharide probes and oligosaccharides mixtures in water extracts of Morinda officinalis were compared in HILIC mode. The results showed that the resolution of separations for the representative analytes of the Sil-epoxy-PEI column was higher than for the Sil-chloropropyl-PEI column, and the developed stationary phase exhibited improved performance compared to hydrothermal carbon, amide columns and other HILIC materials previously reported.


Asunto(s)
Oligosacáridos , Polietileneimina , Dióxido de Silicio , Oligosacáridos/química , Oligosacáridos/síntesis química , Oligosacáridos/aislamiento & purificación , Polietileneimina/química , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier
16.
Plants (Basel) ; 13(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273997

RESUMEN

Phenolic compounds are the predominant chemical constituents in the secondary metabolites of plants and are commonly found in pears. In this study, we focused on the analysis of the phenolic composition and antioxidant activity of leaves from five pear cultivars (Cuiguan, Chaohong, Kuerle, Nanguoli, and Yali) and tea leaves (Fudingdabai as the control) using ultra-performance liquid chromatography coupled with electrospray ionization triple quadrupole mass spectrometry. The results indicated significant differences in the amount and composition of phenolic metabolites between tea and pear leaves, as well as among the five pear varieties. Only approximately one-third of the metabolites exhibited higher levels in pear leaves compared to that in tea leaves. The total phenol content in the Yali cultivar was higher than that in the other pear cultivars. Furthermore, specific phenolic metabolites with high expression were identified in the leaves of different groups. The levels of delphinidin 3-glucoside, aesculin, prunin, cosmosiin, quercetin 3-galactoside, isorhamnetin-3-O-glucoside, nicotiflorin, narcissin, chlorogenic acid, and cryptochlorogenic acid were relatively high among the five pear cultivars. (-)-Gallocatechin gallate, 6-methylcoumarin, aesculetin, hesperidin, kaempferol, and caftaric acid were identified as specific metabolic substances unique to each type of pear leaf. Most of the differential metabolites showed positive correlations and were primarily enriched in the flavonoid biosynthesis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis pathways. DPPH (1,1-Diphenyl-2-picrylhydrazyl radical) analysis indicated that the Yali cultivar exhibited the highest antioxidant activity compared to other varieties. This systematic analysis of the differences in phenolic metabolite composition and antioxidant activity between pear and tea leaves provides a theoretical foundation for the development and utilization of pear leaf resources.

17.
Polymers (Basel) ; 16(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39274035

RESUMEN

Gellan gum (GG) is a natural polysaccharide with a wide range of industrial applications. This review aims to investigate the potential of GG-based films and coatings to act as environmentally friendly substitutes for traditional petrochemical plastics in food packaging. GG-based films and coatings exhibit versatile properties that can be tailored through the incorporation of various substances, such as plant extracts, microorganisms, and nanoparticles. These functional additives enhance properties like the light barrier, antioxidant activity, and antimicrobial capabilities, all of which are essential for extending the shelf-life of perishable food items. The ability to control the release of active compounds, along with the adaptability of GG-based films and coatings to different food products, highlights their effectiveness in preserving quality and inhibiting microbial growth. Furthermore, GG-based composites that incorporate natural pigments can serve as visual indicators for monitoring food freshness. Overall, GG-based composites present a promising avenue for the development of sustainable and innovative food packaging solutions.

18.
Molecules ; 29(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274891

RESUMEN

Molecularly Imprinted Microspheres (MIMs) or Microsphere Molecularly Imprinted Polymers represent an innovative design for the selective extraction of active compounds from natural products, showcasing effectiveness and cost-efficiency. MIMs, crosslinked polymers with specific binding sites for template molecules, overcome irregularities observed in traditional Molecularly Imprinted Polymers (MIPs). Their adaptability to the shape and size of target molecules allows for the capture of compounds from complex mixtures. This review article delves into exploring the potential practical applications of MIMs, particularly in the extraction of active compounds from natural products. Additionally, it provides insights into the broader development of MIM technology for the purification of active compounds. The synthesis of MIMs encompasses various methods, including precipitation polymerization, suspension polymerization, Pickering emulsion polymerization, and Controlled/Living Radical Precipitation Polymerization. These methods enable the formation of MIPs with controlled particle sizes suitable for diverse analytical applications. Control over the template-to-monomer ratio, solvent type, reaction temperature, and polymerization time is crucial to ensure the successful synthesis of MIPs effective in isolating active compounds from natural products. MIMs have been utilized to isolate various active compounds from natural products, such as aristolochic acids from Aristolochia manshuriensis and flavonoids from Rhododendron species, among others. Based on the review, suspension polymerization deposition, which is one of the techniques used in creating MIPs, can be classified under the MIM method. This is due to its ability to produce polymers that are more homogeneous and exhibit better selectivity compared to traditional MIP techniques. Additionally, this method can achieve recovery rates ranging from 94.91% to 113.53% and purities between 86.3% and 122%. The suspension polymerization process is relatively straightforward, allowing for the effective control of viscosity and temperature. Moreover, it is cost-effective as it utilizes water as the solvent.


Asunto(s)
Productos Biológicos , Microesferas , Impresión Molecular , Polímeros Impresos Molecularmente , Polimerizacion , Productos Biológicos/química , Impresión Molecular/métodos , Polímeros Impresos Molecularmente/química , Polímeros/química
19.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274993

RESUMEN

Two new sulfur glycosides, bursapastoris A-B (3-4), were extracted and isolated from shepherd's purse seed, along with two new natural products, 11-(methylsulfinyl)undecanoic acid (2) and 10-(methylsulfinyl)decanoic acid (1). Their structures were determined though infrared spectroscopy, one-dimensional nuclear magnetic resonance (1H and 13C), and electrospray ionization mass spectrometry. Additionally, the structures of 3-4 were further identified by two-dimensional nuclear magnetic resonance (HMBC, HSQC, 1H-1H COSY, and NOESY). Compounds 1-4 showed relatively favorable docking to NF-κB. Unfortunately, we only discovered that compound 1-4 had weak anti-radiation activity at present. Therefore, further research regarding the biological activity of these organosulfur compounds is required at a later stage.


Asunto(s)
Productos Biológicos , Glicósidos , Fitoquímicos , Semillas , Semillas/química , Glicósidos/química , Glicósidos/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Estructura Molecular , Azufre/química , Simulación del Acoplamiento Molecular , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Extractos Vegetales/farmacología
20.
Chemistry ; : e202402583, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276344

RESUMEN

Molecular one-dimensional (1D) electron systems have attracted much attention due to their unique electronic state, physical and chemical properties derived from high-aspect-ratio structures. Among 1D materials, mixed-valence halogen-bridged transition-metal chain complexes (MX-chains) based on coordination assemblies are currently of particular interest because their electronic properties, such as mixed-valence state and band gap, can be controlled by substituting components and varying configurations. In particular, chemistry has recently noted that dimensionally extending MX-chains through organic rung ligands can introduce and modulate electronic coupling of metal atoms between chains, i.e., interchain interactions. In this review, for the first time, we highlight the recent progress on MX systems from the viewpoint of dimensionally extending from 1D chain to ladder and nanotube, mainly involving structural design and electronic properties. Overall, dimensional extension can not only tune the electronic properties of MX-chain, but also build the unique platform for studying transport dynamics in confined space, such as proton conduction. Based on these features, we envision that the MX-chain systems provide valuable insights into deep understanding of 1D electron systems, as well as the potential applications such as nanoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA