Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 442: 138497, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271904

RESUMEN

The production of sustainable materials with properties aimed at the additive manufacturing of electrochemical sensors has gained prestige in the scientific scenario. Here, a novel lab-made composite material using graphite (G) and carbon nitride (C3N4) embedded into polylactic acid (PLA) biopolymer is proposed to produce 3D-printed electrodes. PLA offers printability and mechanical stability in this composition, while G and C3N4 provide electrical properties and electrocatalytic sites, respectively. Characterizations by Raman and infrared spectroscopies and Energy Dispersive X-rays indicated that the G/C3N4/PLA composite was successfully obtained, while electron microscopy images revealed non-homogeneous rough surfaces. Better electrochemical properties were achieved when the G/C3N4/PLA proportion (35:5:60) was used. As a proof of concept, amaranth (AMR), a synthetic dye, was selected as an analyte, and a fast method using square wave voltammetry was developed. Utilizing the 3D-printed G/C3N4/PLA electrode, a more comprehensive linear range (0.2 to 4.2 µmol/L), a 5-fold increase in sensitivity (9.83 µmol-1 L µA), and better limits of detection (LOD = 0.06 µmol/L) and quantification (LOQ = 0.18 µmol/L) were achieved compared to the G/PLA electrode. Samples of jelly, popsicles, isotonic drinks, and food flavoring samples were analyzed, and similar results to those obtained by UV-vis spectrometry confirmed the method's reliability. Therefore, the described sensor is a simple, cost-effective alternative for assessing AMR in routine food analysis.


Asunto(s)
Amaranthus , Grafito , Nitrilos , Compuestos de Nitrógeno , Colorante de Amaranto , Reproducibilidad de los Resultados , Electrodos , Poliésteres , Impresión Tridimensional , Técnicas Electroquímicas
2.
J Biomater Sci Polym Ed ; 34(10): 1408-1429, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36628582

RESUMEN

Scaffold is one of the key components for tissue engineering application. Three-dimensional (3D) printing has given a new avenue to the scaffolds design to closely mimic the real tissue. However, material selection has always been a challenge in adopting 3D printing for scaffolds fabrication, especially for hard tissue. The fused filament fabrication technique is one of the economical 3D printing technology available today, which can efficiently fabricate scaffolds with its key features. In the present study, a hybrid polymer-ceramic scaffold has been prepared by combining the benefit of synthetic biodegradable poly (lactic acid) (PLA) and osteoconductive calcium sulphate (CaS), to harness the advantage of both materials. Composite PLA filament with maximum ceramic loading of 40 wt% was investigated for its printability and subsequently scaffolds were 3D printed. The composite filament was extruded at a temperature of 160 °C at a constant speed with an average diameter of 1.66 ± 0.34 mm. PLA-CaS scaffold with ceramic content of 10%, 20%, and 40% was 3D printed with square pore geometry. The developed scaffolds were characterized for their thermal stability, mechanical, morphological, and geometrical accuracy. The mechanical strength was improved by 29% at 20 wt% of CaS. The porosity was found to be 50-60% with an average pore size of 550 µm with well-interconnected pores. The effect of CaS particles on the degradation behaviour of scaffolds was also assessed over an incubation period of 28 days. The CaS particles acted as porogen and improved the surface chemistry for future cellular activity, while accelerating the degradation rate.


Asunto(s)
Sulfato de Calcio , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Poliésteres/química , Porosidad , Impresión Tridimensional
3.
Heliyon ; 9(11): e22333, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38205399

RESUMEN

In the present study, a thermoplastic-reinforced composite filament for 3D printing applications was created by mixing short glass fibers (SGF) with the thermoplastic matrix made from plastic waste. Short glass fiber-reinforced recycled high-density polyethylene (rHDPE) and recycled polyethylene terephthalate (rPET) blend thermoplastic composite filaments were first prepared by a plastic extrusion machine. The produced filaments' physical, mechanical, and thermal properties were investigated. After achieving the desired filament, a 3D printing technology called material extrusion was utilized to create 3D sample parts. The mechanical properties of each printed sample were analyzed following ASTM standards, and their morphological structures were also studied at various weight percentages (pure rHDPE, rHDPE/rPET (75/25 %), rHDPE/rPET reinforced with 15 % SGF, and rHDPE/rPET reinforced with 30 % SGF wt%). From the study, a 52 % increase in tensile strength, 32 % in Young's modulus, and a 50 % reduction in elongation with the addition of 30 wt% of SGF to rHDPE/rPET were noted compared to pure rHDPE. Generally, 3D printable composite filaments can be developed through the incorporation of SGF into plastic waste. This has tremendous advantages for solving environmental pollution and achieving sustainable development.

4.
Mikrochim Acta ; 189(11): 414, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217039

RESUMEN

The development of a homemade carbon black composite filament with polylactic acid (CB-PLA) is reported. Optimized filaments containing 28.5% wt. of carbon black were obtained and employed in the 3D printing of improved electrochemical sensors by fused deposition modeling (FDM) technique. The fabricated filaments were used to construct a simple electrochemical system, which was explored for detecting catechol and hydroquinone in water samples and detecting hydrogen peroxide in milk. The determination of catechol and hydroquinone was successfully performed by differential pulse voltammetry, presenting LOD values of 0.02 and 0.22 µmol L-1, respectively, and recovery values ranging from 91.1 to 112% in tap water. Furthermore, the modification of CB-PLA electrodes with Prussian blue allowed the non-enzymatic amperometric detection of hydrogen peroxide at 0.0 V (vs. carbon black reference electrode) in milk samples, with a linear range between 5.0 and 350.0 mol L-1 and low limit of detection (1.03 µmol L-1). Thus, CB-PLA can be successfully applied as additively manufactured electrochemical sensors, and the easy filament manufacturing process allows for its exploration in a diversity of applications.


Asunto(s)
Hidroquinonas , Hollín , Catecoles/análisis , Peróxido de Hidrógeno , Hidroquinonas/análisis , Poliésteres , Agua
5.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681873

RESUMEN

In this work, we evaluated the influence of a novel hybrid 3D-printed porous composite scaffold based on poly(ε-caprolactone) (PCL) and ß-tricalcium phosphate (ß-TCP) microparticles in the process of adhesion, proliferation, and osteoblastic differentiation of multipotent adult human bone marrow mesenchymal stem cells (ah-BM-MSCs) cultured under basal and osteogenic conditions. The in vitro biological response of ah-BM-MSCs seeded on the scaffolds was evaluated in terms of cytotoxicity, adhesion, and proliferation (AlamarBlue Assay®) after 1, 3, 7, and 14 days of culture. The osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, mineralization (Alizarin Red Solution, ARS), expression of surface markers (CD73, CD90, and CD105), and reverse transcription-quantitative polymerase chain reaction (qRT-PCR) after 7 and 14 days of culture. The scaffolds tested were found to be bioactive and biocompatible, as demonstrated by their effects on cytotoxicity (viability) and extracellular matrix production. The mineralization and ALP assays revealed that osteogenic differentiation increased in the presence of PCL/ß-TCP scaffolds. The latter was also confirmed by the gene expression levels of the proteins involved in the ossification process. Our results suggest that similar bio-inspired hybrid composite materials would be excellent candidates for osteoinductive and osteogenic medical-grade scaffolds to support cell proliferation and differentiation for tissue engineering, which warrants future in vivo research.


Asunto(s)
Fosfatos de Calcio/química , Diferenciación Celular/genética , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Poliésteres/química , Fosfatasa Alcalina/metabolismo , Adhesión Celular , Proliferación Celular , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Osteogénesis/genética , Osteogénesis/fisiología , Porosidad , Impresión Tridimensional , Andamios del Tejido , Microtomografía por Rayos X
6.
Polymers (Basel) ; 13(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34503015

RESUMEN

Lignocellulose nanofibrils (LCNFs) with different lignin contents were prepared using choline chloride (ChCl)/lactic acid (LA), deep eutectic solvent (DES) pretreatment, and subsequent mechanical defibrillation. The LCNFs had a diameter of 15.3-18.2 nm, which was similar to the diameter of commercial pure cellulose nanofibrils (PCNFs). The LCNFs and PCNFs were wet-spun in CaCl2 solution for filament fabrication. The addition of sodium alginate (AL) significantly improved the wet-spinnability of the LCNFs. As the AL content increased, the average diameter of the composite filaments increased, and the orientation index decreased. The increase in AL content improved the wet-spinnability of CNFs but deteriorated the tensile properties. The increase in the spinning rate resulted in an increase in the orientation index, which improved the tensile strength and elastic modulus.

7.
Polymers (Basel) ; 14(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35012028

RESUMEN

This study aimed to characterize the effect of a glass powder additive on recycled polypropylene (rPP) materials from food packaging to be used as filaments in material extrusion (MEX) 3D printing applications. The composite filaments studied were rPP filaments with glass powder (GP) additive in the 2.5%, 5%, and 10% fractions. As a baseline, the filaments made of pure virgin PP and rPP without additive were used. The filament that has been successfully made is then printed into a tensile test specimen and an impact test to observe its mechanical properties. Fourier-transform infrared spectroscopy (FTIR) characterization was also carried out to determine the effect of chemical bonding and thermal characterization using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results of FTIR characterization on the sample rPP + 10% do not show a typical peak shift of PP, but give rise to new peaks at wavenumbers of 1000 cm-1 (Si-O-Na), 890 cm-1 (Si-H) and 849 cm-1 (O-Si-O), which indicate the typical peaks of the glass constituent compounds. In the thermal characteristics, the addition of GP shows the improved stability of mass changes to heat and increases the melting temperature of rPP. The ultimate tensile strength and Young's modulus for rPP-based specimens with 10% GP additive showed an increase of 38% and 42% compared to PP specimens. In addition to the improved mechanical strength, the addition of GP also reduces the bending deformation, which can be well controlled, and reduces curvature, which is a problem in semicrystalline polymer-based filaments.

8.
Prosthet Orthot Int ; 42(6): 644-651, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29974821

RESUMEN

BACKGROUND:: A low-cost, yet high-functioning, fabrication method for prosthetic components is needed to provide underserved amputee communities with quality mobility devices. Three-dimensional printing is a potential alternative, yet limitations in material characteristics have previously prevented the technology from emerging as a solution. OBJECTIVE:: To validate the application of a novel three-dimensional printing technique as a fabrication method for creating fiber composite patient end-use prosthetic feet. STUDY DESIGN:: Experimental designs were iterated upon throughout mechanical testing. METHODS:: A testing apparatus capable of loading prosthetic feet in dorsiflexion and plantarflexion was constructed. Load displacement data were gathered, and energy analyses were conducted. The three-dimensionally printed feet were compared to a Freedom Innovations Renegade® MX carbon fiber foot and a solid-ankle cushion heel foot. RESULTS:: The three-dimensionally printed feet achieved energy profiles that were similar, and in some cases preferable, to the energy profiles of the Renegade MX and solid-ankle cushion heel foot. The stiffness profiles of the three-dimensionally printed feet varied widely and depended greatly on the design of the feet, as well as the amount and location of the fiber reinforcement. CONCLUSION:: Composite filament fabrication three-dimensional printing has the potential to serve as a fabrication method for the production of energy returning prosthetic feet. CLINICAL RELEVANCE:: The results of this study indicate that carbon fiber reinforced three-dimensionally printed prosthetic feet have the potential to serve as a low-cost alternative to carbon fiber prosthetic feet and that three-dimensional printing has the capacity to function as a viable fabrication method for patient end-use prosthetic components.


Asunto(s)
Miembros Artificiales , Fibra de Carbono , Pie , Impresión Tridimensional , Diseño de Prótesis , Humanos , Fenómenos Mecánicos , Reproducibilidad de los Resultados
9.
Materials (Basel) ; 10(4)2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28772694

RESUMEN

This paper presents the development of wood flour (WF)-filled polylactic acid (PLA) composite filaments for a fused deposition modeling (FDM) process with the aim of application to 3D printing. The composite filament consists of wood flour (5 wt %) in a PLA matrix. The detailed formulation and characterization of the composite filament were investigated experimentally, including tensile properties, microstructure, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The feedstock filaments of this composite were produced and used successfully in an assembled FDM 3D printer. The research concludes that compared with pure PLA filament, adding WF changed the microstructure of material fracture surface, the initial deformation resistance of the composite was enhanced, the starting thermal degradation temperature of the composite decreased slightly, and there were no effects on the melting temperature. The WF/PLA composite filament is suitable to be printed by the FDM process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA