Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39221977

RESUMEN

Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba2La2NiW2O12 by substitution of Ba2+ with Sr2+ to produce Sr2La2NiW2O12 are investigated. The two materials are characterized using synchrotron-based XRD, XANES and EXAFS in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in space group R3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the TC value of the magnetic Ni2+ sublattice is reduced from ∼6 K in Ba2La2NiW2O12 to 4 K in Sr2La2NiW2O12.

2.
ACS Appl Mater Interfaces ; 16(15): 19184-19197, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564510

RESUMEN

Perovskite cobaltites have emerged as archetypes for electrochemical control of materials properties in electrolyte-gate devices. Voltage-driven redox cycling can be performed between fully oxygenated perovskite and oxygen-vacancy-ordered brownmillerite phases, enabling exceptional modulation of the crystal structure, electronic transport, thermal transport, magnetism, and optical properties. The vast majority of studies, however, have focused heavily on the perovskite and brownmillerite end points. In contrast, here we focus on hysteresis and reversibility across the entire perovskite ↔ brownmillerite topotactic transformation, combining gate-voltage hysteresis loops, minor hysteresis loops, quantitative operando synchrotron X-ray diffraction, and temperature-dependent (magneto)transport, on ion-gel-gated ultrathin (10-unit-cell) epitaxial La0.5Sr0.5CoO3-δ films. Gate-voltage hysteresis loops combined with operando diffraction reveal a wealth of new mechanistic findings, including asymmetric redox kinetics due to differing oxygen diffusivities in the two phases, nonmonotonic transformation rates due to the first-order nature of the transformation, and limits on reversibility due to first-cycle structural degradation. Minor loops additionally enable the first rational design of an optimal gate-voltage cycle. Combining this knowledge, we demonstrate state-of-the-art nonvolatile cycling of electronic and magnetic properties, encompassing >105 transport ON/OFF ratios at room temperature, and reversible metal-insulator-metal and ferromagnet-nonferromagnet-ferromagnet cycling, all at 10-unit-cell thickness with high room-temperature stability. This paves the way for future work to establish the ultimate cycling frequency and endurance of such devices.

3.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38334512

RESUMEN

The growth of epitaxial thin films from the Ruddlesden-Popper series of strontium iridates by magnetron sputtering is analyzed. It was found that, even using a non-stoichiometric target, the films formed under various conditions were consistently of the perovskite-like n = ∞ SrIrO3 phase, with no evidence of other RP series phases. A detailed inspection of the temperature-oxygen phase diagram underscored that kinetics mechanisms prevail over thermodynamics considerations. The analysis of the angular distribution of sputtered iridium and strontium species indicated clearly different spatial distribution patterns. Additionally, significant backsputtering was detected at elevated temperatures. Thus, it is assumed that the interplay between these two kinetic phenomena is at the origin of the preferential nucleation of the SrIrO3 phase. In addition, strategies for controlling cation stoichiometry off-axis have also been explored. Finally, the long-term stability of the films has been demonstrated.

4.
Nano Lett ; 24(8): 2567-2573, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38367281

RESUMEN

The boundary between CaRuO3 and CaMnO3 is an ideal test bed for emergent magnetic ground states stabilized through interfacial electron interactions. In this system, nominally antiferromagnetic and paramagnetic materials combine to yield interfacial ferromagnetism in CaMnO3 due to electron leakage across the interface. In this work, we show that the crystal symmetry at the surface is a critical factor determining the nature of the interfacial interactions. Specifically, by growing CaRuO3/CaMnO3 heterostructures along the (111) instead of the (001) crystallographic axis, we achieve a 3-fold enhancement of the magnetization and involve the CaRuO3 layers in the ferromagnetism, which now spans both constituent materials. The stabilization of a net magnetic moment in CaRuO3 through strain effects has been long-sought but never consistently achieved, and our observations demonstrate the importance of interface engineering in the development of new functional heterostructures.

5.
ACS Appl Mater Interfaces ; 16(3): 4138-4149, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38216138

RESUMEN

We report the observation of fully magnetically polarized ultrathin La0.8Sr0.2MnO3 films by using LaMnO3 and La0.45Sr0.55MnO3 buffer layers grown epitaxially on SrTiO3(001) substrates by molecular beam epitaxy. Specifically, we show that La0.8Sr0.2MnO3 films grown on 12-unit-cell LaMnO3 have bulk-like magnetic moments starting from a single unit cell thickness, while for the 15-unit-cell La0.45Sr0.55MnO3 buffer layer, the La0.8Sr0.2MnO3 transitions from an antiferromagnetic state to a fully spin-polarized ferromagnetic state at 4 unit cells. The magnetic results are confirmed by X-ray magnetic circular dichroism, while linear dichroic measurements carried out for the La0.8Sr0.2MnO3/La0.45Sr0.55MnO3 series show the presence of an orbital reorganization at the transition from the antiferromagnetic to ferromagnetic state corresponding to a change from a preferred in-plane orbital hole occupancy, characteristic of the A-type antiferromagnetic state of La0.45Sr0.55MnO3, to preferentially out of plane. We interpret our findings in terms of the different electronic charge transfers between the adjacent layers, confined to the unit cell in the case of insulating LaMnO3 and extended to a few unit cells in the case of conducting La0.45Sr0.55MnO3. Our work demonstrates an approach to growing ultrathin mixed-valence manganite films that are fully magnetically polarized from the single unit cell, paving the way to fully exploring the unique electronic properties of this class of strongly correlated oxide materials.

6.
Adv Mater ; 36(8): e2305763, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37811809

RESUMEN

Spin-polarized two-dimensional (2D) materials with large and tunable spin-splitting energy promise the field of 2D spintronics. While graphene has been a canonical 2D material, its spin properties and tunability are limited. Here, this work demonstrates the emergence of robust spin-polarization in graphene with large and tunable spin-splitting energy of up to 132 meV at zero applied magnetic fields. The spin polarization is induced through a magnetic exchange interaction between graphene and the underlying ferrimagnetic oxide insulating layer, Tm3 Fe5 O12 , as confirmed by its X-ray magnetic circular dichroism (XMCD). The spin-splitting energies are directly measured and visualized by the shift in their Landau-fan diagram mapped by analyzing the measured Shubnikov-de-Haas (SdH) oscillations as a function of applied electric fields, showing consistent fit with the first-principles and machine learning calculations. Further, the observed spin-splitting energies can be tuned over a broad range between 98 and 166 meV by field cooling. The methods and results are applicable to other 2D (magnetic) materials and heterostructures, and offer great potential for developing next-generation spin logic and memory devices.

7.
Environ Res ; 238(Pt 1): 117148, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716391

RESUMEN

Waste three-way catalysts (TWCs) have attracted much attention due to the presence of platinum group metals (PGMs) and hazardous substances such as heavy metals and organic matter. The extraction of PGMs from waste TWCs using hydrochloric acid (HCl) has been extensively researched. However, the addition of oxidizing agents like H2O2 and aqua regia is necessary to facilitate PGMs dissolution, which poses significant environmental and operational hazards. Hence, developing a green PGMs recovery process without oxidants is imperative. Previously, we investigated the process of Li2CO3 calcination pretreatment to enhance the leaching of PGMs from waste TWCs by HCl, focusing on the process and mechanism of Li2CO3 calcination pretreatment. In this study, we focused on the leaching process of HCl after pretreatment. Our investigation includes a detailed examination of leaching kinetics and mechanisms. The optimal leaching conditions were: leaching temperature of 150 °C, leaching time of 2 h, HCl concentration of 12 M, and liquid-solid ratio of 10 mL/g. The experiments resulted in maximum leaching rates of about 96%, 97%, and 97% for Pt, Pd, and Rh, respectively. However, given the presence of heavy metals, attention needs to be paid to the harmless treatment of waste acids and leaching residues. The Pt and Pd leaching process is controlled by a mixture of interfacial chemical reactions and internal diffusion, and dominated by internal diffusion, while the leaching process of Rh is controlled by interfacial chemical reactions. Li+ in Li2PtO3, Li2PdO2, and Li2RhO3 preferentially leached and underwent ion-exchange reactions with H+, promoting the dissolution of Pt, Pd, and Rh in HCl.


Asunto(s)
Metales Pesados , Platino (Metal) , Ácido Clorhídrico/química , Peróxido de Hidrógeno/química , Metales Pesados/química , Litio , Oxidantes , Reciclaje
8.
ACS Appl Mater Interfaces ; 15(30): 37038-37046, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37478394

RESUMEN

Spin injection and spin-charge conversion processes in all-oxide La2/3Sr1/3MnO3/SrIrO3 (LSMO/SIO) heterostructures with different SIO layer thickness and interfacial features have been studied. Ferromagnetic resonance (FMR) technique has been used to generate pure spin currents by spin pumping (SP) in ferromagnetic (FM) half-metallic LSMO. The change of the resonance linewidth in bare LSMO layers and LSMO/SIO heterostructures suggests a successful spin injection into the SIO layers. However, low values of the spin mixing conductance, compared to more traditional permalloy (Py)/Pt or yttrium iron garnet (YIG)/Pt systems, are found. A thorough analysis of the interfaces by high-resolution scanning transmission electron microscopy (HR-STEM) imaging suggests that they are structurally clean and atomic sharp, but a compositional analysis by energy-dispersive X-ray spectroscopy (EDS) reveals the interdiffusion of La, Ir, and Mn atomic species in the first atomic layers close to the interface. Inverse spin Hall effect (ISHE) measurements evidence that interfacial features play a very relevant role in controlling the effectiveness of the spin injection process and low transversal ISHE voltage signals are detected. In addition, it is found that larger voltage signals are detected for the lowest SIO layer thickness highlighting the role of the spin diffusion length (λsd)/SIO layer thickness ratio. The values of ISHE voltage are rather low but allow us to determine the spin Hall angle of SIO (θSH ≈ 1.12% at T = 250 K), which is remarkably similar to that obtained for the well-known Py/Pt system, therefore suggesting that SIO could be a promising spin-Hall material.

9.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 5): 469-473, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37151825

RESUMEN

The resurgence of inter-est in hydrogen-related technologies has stimulated new studies aimed at advancing lesser-developed water-splitting processes, such as solar thermochemical hydrogen production (STCH). Progress in STCH has been largely hindered by a lack of new materials able to efficiently split water at a rate comparable to ceria under identical experimental conditions. BaCe0.25Mn0.75O3 (BCM) recently demonstrated enhanced hydrogen production over ceria and has the potential to further our understanding of two-step thermochemical cycles. A significant feature of the 12R hexa-gonal perovskite structure of BCM is the tendency to, in part, form a 6H polytype at high temperatures and reducing environments (i.e., during the first step of the thermochemical cycle), which may serve to mitigate degradation of the complex oxide. An analogous compound, namely BaNb0.25Mn0.75O3 (BNM) with a 12R structure was synthesized and displays nearly complete conversion to the 6H structure under identical reaction conditions as BCM. The structure of the BNM-6H polytype was determined from Rietveld refinement of synchrotron powder X-ray diffraction data and is presented within the context of the previously established BCM-6H structure.

10.
Small ; 19(30): e2300824, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37060220

RESUMEN

Complex oxide films stabilized by epitaxial growth can exhibit large populations of point defects which have important effects on their properties. The site occupancy of pulsed laser-deposited epitaxial terbium iron garnet (TbIG) films with excess terbium (Tb) is analyzed, in which the terbium:iron (Tb:Fe)ratio is 0.86 compared to the stoichiometric value of 0.6. The magnetic properties of the TbIG are sensitive to site occupancy, exhibiting a higher compensation temperature (by 90 K) and a lower Curie temperature (by 40 K) than the bulk Tb3 Fe5 O12 garnet. Data derived from X-ray core-level spectroscopy, magnetometry, and molecular field coefficient modeling are consistent with occupancy of the dodecahedral sites by Tb3+ , the octahedral sites by Fe3+ , Tb3+ and vacancies, and the tetrahedral sites by Fe3+ and vacancies. Energy dispersive X-ray spectroscopy in a scanning transmission electron microscope provides direct evidence of TbFe antisites. A small fraction of Fe2+ is present, and oxygen vacancies are inferred to be present to maintain charge neutrality. Variation of the site occupancies provides a path to considerable manipulation of the magnetic properties of epitaxial iron garnet films and other complex oxides, which readily accommodate stoichiometries not found in their bulk counterparts.

11.
J Hazard Mater ; 452: 131348, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37027921

RESUMEN

Recovery of platinum group metals (PGMs) from waste three-way catalysts (TWCs) was usually achieved by dissolving them in an acid solution. However, their dissolution requires the addition of oxidizing agents such as Cl2 and aqua regia, which could cause high environmental risks. Therefore, the development of new methods without the addition of oxidant agents will contribute to the green recovery of PGMs. In this paper, the process and mechanism of PGMs recovery from waste TWCs by Li2CO3 calcination pretreatment-HCl leaching were studied in detail, and molecular dynamics calculations were performed for the formation processes of Pt, Pd, and Rh complex oxides. The results showed that the leaching rates of Pt, Pd, and Rh could reach about 95%, 98%, and 97%, respectively, under the optimal conditions. Li2CO3 calcination pretreatment cannot only oxidize Pt, Pd, and Rh metals to HCl-soluble Li2PtO3, Li2PdO2, and Li2RhO3, but also remove the carbon accumulation in waste TWCs and open the wrapping of PGMs by the substrate and Al2O3 coating. The embedding of Li and O atoms in metallic Pt, Pd, and Rh is an interacting embedding process. Although the Li atoms are faster than O, O will accumulate on the metal surface first before embedding.

12.
Life (Basel) ; 13(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36836711

RESUMEN

Graft copolymerization of methyl methacrylate onto cod collagen was carried out under visible light irradiation (λ = 400-700 nm) at 20-25 °C using the RbTe1.5W0.5O6, CsTeMoO6, and RbNbTeO6 complex oxides with ß-pyrochlore structure as photocatalysts. The as-prepared materials were characterized by X-ray diffraction, scanning electron microscopy, and UV-Vis diffuse reflectance spectroscopy. It was also found that RbNbTeO6 with ß-pyrochlore structure was not able to photocatalyze the reaction. Enzymatic hydrolysis of the obtained graft copolymers proceeds with the formation of peptides with a molecular weight (MW) of about 20 and 10 kDa. In contrast to collagen, which decomposes predominantly to peptides with MW of about 10 kDa, the ratio of fractions with MW of about 10 kDa and 20 kDa differs much less, their changes are symbatic, and the content of polymers with MW of more than 20 kDa is about 70% after 1 h in the case of graft copolymers. The data obtained indicate that synthetic fragments grafted to the collagen macromolecule do not prevent the hydrolysis of the peptide bonds but change the rate of polymer degradation. This is important for creating network matrix scaffolds based on graft copolymers by cross-linking peptides, which are products of enzymatic hydrolysis.

13.
Adv Mater ; 35(37): e2203352, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35723973

RESUMEN

The fields of brain-inspired computing, robotics, and, more broadly, artificial intelligence (AI) seek to implement knowledge gleaned from the natural world into human-designed electronics and machines. In this review, the opportunities presented by complex oxides, a class of electronic ceramic materials whose properties can be elegantly tuned by doping, electron interactions, and a variety of external stimuli near room temperature, are discussed. The review begins with a discussion of natural intelligence at the elementary level in the nervous system, followed by collective intelligence and learning at the animal colony level mediated by social interactions. An important aspect highlighted is the vast spatial and temporal scales involved in learning and memory. The focus then turns to collective phenomena, such as metal-to-insulator transitions (MITs), ferroelectricity, and related examples, to highlight recent demonstrations of artificial neurons, synapses, and circuits and their learning. First-principles theoretical treatments of the electronic structure, and in situ synchrotron spectroscopy of operating devices are then discussed. The implementation of the experimental characteristics into neural networks and algorithm design is then revewed. Finally, outstanding materials challenges that require a microscopic understanding of the physical mechanisms, which will be essential for advancing the frontiers of neuromorphic computing, are highlighted.

14.
Small ; 18(35): e2202768, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35931457

RESUMEN

High-sensitivity nanomechanical sensors are mostly based on silicon technology and related materials. The use of functional materials, such as complex oxides having strong interplay between structural, electronic, and magnetic properties, may open possibilities for developing new mechanical transduction schemes and for further enhancement of the device performances. The integration of these materials into micro/nano-electro-mechanical systems (MEMS/NEMS) is still at its very beginning and critical basic aspects related to the stress state and the quality factors of mechanical resonators made from epitaxial oxide thin films need to be investigated. Here, suspended micro-bridges are realized from single-crystal thin films of (La0.7 ,Sr0.3 )MnO3 (LSMO), a prototypical complex oxide showing ferromagnetic ground state at room temperature. These devices are characterized in terms of resonance frequency, stress state, and Q-factor. LSMO resonators are highly stressed, with a maximum value of ≈260 MPa. The temperature dependence of their mechanical resonance is discussed considering both thermal strain and the temperature-dependent Young's modulus. The measured Q-factors reach few tens of thousands at room temperature, with indications of further improvements by optimizing the fabrication protocols. These results demonstrate that complex oxides are suitable to realize high Q-factor mechanical resonators, paving the way toward the development of full-oxide MEMS/NEMS sensors.

15.
Adv Mater ; 34(44): e2204630, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36039705

RESUMEN

Suspended piezoelectric thin films are key elements enabling high-frequency filtering in telecommunication devices. To meet the requirements of next-generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high-quality mechanical and electrical properties of graphene electrodes are combined with the strong piezoelectric performance of the free-standing complex oxide, BaTiO3 (BTO), to create ultrathin piezoelectric resonators. It is demonstrated that the device can be brought into mechanical resonance by piezoelectric actuation. By sweeping the DC bias voltage on the top graphene electrode, the BTO membrane is switched between the two poled ferroelectric states. Remarkably, ferroelectric hysteresis is also observed in the resonance frequency, magnitude and Q-factor of the first membrane mode. In the bulk acoustic mode, the device vibrates at 233 GHz. This work demonstrates the potential of combining van der Waals materials with complex oxides for next-generation electronics, which not only opens up opportunities for increasing filter frequencies, but also enables reconfiguration by poling, via ferroelectric memory effect.

16.
J Phys Condens Matter ; 34(38)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35779514

RESUMEN

Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices.

17.
Proc Natl Acad Sci U S A ; 119(30): e2205762119, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862458

RESUMEN

Looming concerns regarding scarcity, high prices, and safety threaten the long-term use of lithium in energy storage devices. Calcium has been explored in batteries because of its abundance and low cost, but the larger size and higher charge density of calcium ions relative to lithium impairs diffusion kinetics and cyclic stability. In this work, an aqueous calcium-ion battery is demonstrated using orthorhombic, trigonal, and tetragonal polymorphs of molybdenum vanadium oxide (MoVO) as a host for calcium ions. Orthorhombic and trigonal MoVOs outperform the tetragonal structure because large hexagonal and heptagonal tunnels are ubiquitous in such crystals, providing facile pathways for calcium-ion diffusion. For trigonal MoVO, a specific capacity of ∼203 mAh g-1 was obtained at 0.2C and at a 100 times faster rate of 20C, an ∼60 mAh g-1 capacity was achieved. The open-tunnel trigonal and orthorhombic polymorphs also promoted cyclic stability and reversibility. A review of the literature indicates that MoVO provides one of the best performances reported to date for the storage of calcium ions.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35545871

RESUMEN

Oxide perovskites have attracted great interest as materials for energy conversion due to their stability and structural tunability. La-based perovskites of 3d-transition metals have demonstrated excellent activities as electrocatalysts in water oxidation. Herein, we report the synthesis route to La-based perovskites using an environmentally friendly deep eutectic solvent (DES) consisting of choline chloride and malonic acid. The DES route affords phase-pure crystalline materials on a gram scale and results in perovskites with high electrocatalytic activity for oxygen evolution reaction. A convenient, fast, and scalable synthesis proceeds via assisted metathesis at a lower temperature as compared to traditional solid-state methods. Among LaCoO3, LaMn0.5Ni0.5O3, and LaMnO3 perovskites prepared via the DES route, LaCoO3 was established to be the best-performing electrocatalyst for water oxidation in alkaline medium at 0.25 mg cm-2 mass loading. LaCoO3 exhibits current densities of 10, 50, and 100 mA cm-2 at respective overpotentials of approximately 390, 430, and 470 mV, respectively, and features a Tafel slope of 55.8 mV dec-1. The high activity of LaCoO3 as compared to the other prepared perovskites is attributed to the high concentration of oxygen vacancies in the LaCoO3 lattice, as observed by high-resolution transmission electron microscopy. An intrinsically high concentration of O vacancies in the LaCoO3 synthesized via the DES route is ascribed to the reducing atmosphere attained upon thermal decomposition of the DES components. These findings will contribute to the preparation of highly active perovskites for various energy applications.

19.
Adv Mater ; 34(24): e2200866, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35429184

RESUMEN

Bulk SrTiO3 is a well-known band insulator and the most common substrate used in the field of complex oxide heterostructures. Its surface and interface with other oxides, however, have demonstrated a variety of remarkable behaviors distinct from those expected. In this work, using a suite of in situ techniques to monitor both the atomic and electronic structures of the SrTiO3 (001) surface prior to and during growth, the disappearance and re-appearance of a 2D electron gas (2DEG) is observed after the completion of each SrO and TiO2 monolayer, respectively. The 2DEG is identified with the TiO2 double layer present at the initial SrTiO3 surface, which gives rise to a surface potential and mobile electrons due to vacancies within the TiO2-x adlayer. Much like the electronic reconstruction discovered in other systems, two atomic planes are required, here supplied by the double layer. The combined in situ scattering/spectroscopy findings resolve a number of longstanding issues associated with complex oxide interfaces, facilitating the employment of atomic-scale defect engineering in oxide electronics.

20.
Nano Lett ; 22(4): 1475-1482, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35119289

RESUMEN

Although 2D materials hold great potential for next-generation pressure sensors, recent studies revealed that gases permeate along the membrane-surface interface, necessitating additional sealing procedures. In this work, we demonstrate the use of free-standing complex oxides as self-sealing membranes that allow the reference cavity beneath to be sealed by a simple anneal. To test the hermeticity, we study the gas permeation time constants in nanomechanical resonators made from SrRuO3 and SrTiO3 membranes suspended over SiO2/Si cavities which show an improvement up to 4 orders of magnitude in the permeation time constant after annealing the devices. Similar devices fabricated on Si3N4/Si do not show such improvements, suggesting that the adhesion increase over SiO2 is mediated by oxygen bonds that are formed at the SiO2/complex oxide interface during the self-sealing anneal. Picosecond ultrasonics measurements confirm the improvement in the adhesion by 70% after annealing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA