Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 352: 120055, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38184868

RESUMEN

The kinetics knowledge of lignocellulosic biomass decomposition is essential to develop efficient thermochemical conversion technology. However, the simplification of reaction mechanisms in existing oxidative pyrolysis studies largely compromises the application of kinetic models. To explore more exact kinetic parameters and reaction mechanism of lignocellulosic biomass oxidative pyrolysis, an updated oxidative pyrolysis kinetic model (seven-step reaction combined kinetics model) coupled with an optimization algorithm is proposed. Based on a series of thermogravimetric experiments in an air atmosphere, the extra oxidative pyrolysis kinetic parameters are obtained by the Shuffled Complex Evolution method. The proposed kinetic model is validated based on the degradation process of each component (hemicellulose, cellulose, and lignin). Furthermore, the obtained kinetic parameters are applied to predict the oxidative pyrolysis behavior, and the predicted mass loss rate is in good agreement with the experimental data. Eventually, according to the key combined kinetics parameters, it is found that the oxidative pyrolysis mechanisms of hemicellulose, cellulose, and lignin correspond to the power law, nucleation & growth, and chemical reaction order, respectively, while the combustion of char corresponds to the reaction order mechanism.


Asunto(s)
Lignina , Pirólisis , Lignina/química , Biomasa , Termogravimetría , Celulosa/química , Cinética , Estrés Oxidativo
2.
Bioresour Technol ; 219: 510-520, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27521788

RESUMEN

Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law.


Asunto(s)
Biomasa , Celulosa/metabolismo , Productos Agrícolas/metabolismo , Lignina/metabolismo , Celulosa/química , Productos Agrícolas/química , Cinética , Lignina/química , Modelos Teóricos , Polisacáridos/química , Polisacáridos/metabolismo , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA