Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Agric Food Chem ; 72(23): 13054-13068, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38809142

RESUMEN

Inflammatory bowel disease (IBD) etiology is intricately linked to oxidative stress and inflammasome activation. Natural antioxidant nobiletin (NOB) contains excellent anti-inflammatory properties in alleviating intestinal injury. However, the insufficient water solubility and low bioavailability restrict its oral intervention for IBD. Herein, we constructed a highly efficient NOB-loaded yeast microcapsule (YM, NEFY) exhibiting marked therapeutic efficacy for dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) at a low oral dose of NOB (20 mg/kg). We utilized the metal polyphenol network (MPN) formed by self-assembly of epigallocatechin gallate (EGCG) and FeCl3 as the intermediate carrier to improve the encapsulation efficiency (EE) of NOB by 4.2 times. These microcapsules effectively alleviated the inflammatory reaction and oxidative stress of RAW264.7 macrophages induced by lipopolysaccharide (LPS). In vivo, NEFY with biocompatibility enabled the intestinal enrichment of NOB through controlled gastrointestinal release and macrophage targeting. In addition, NEFY could inhibit NLRP3 inflammasome and balance the macrophage polarization, which favors the complete intestinal mucosal barrier and recovery of colitis. Based on the oral targeted delivery platform of YM, this work proposes a novel strategy for developing and utilizing the natural flavone NOB to intervene in intestinal inflammation-related diseases.


Asunto(s)
Colitis Ulcerosa , Flavonas , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Animales , Humanos , Masculino , Ratones , Antiinflamatorios/química , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Cápsulas/química , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Flavonas/administración & dosificación , Flavonas/química , Flavonas/farmacología , Inflamasomas/inmunología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Estrés Oxidativo/efectos de los fármacos , Polifenoles/química , Polifenoles/administración & dosificación , Polifenoles/farmacología , Células RAW 264.7 , Saccharomyces cerevisiae/química
2.
BMC Med ; 22(1): 182, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685001

RESUMEN

BACKGROUND: The exact mechanisms linking the gut microbiota and social behavior are still under investigation. We aimed to explore the role of the gut microbiota in shaping social behavior deficits using selectively bred mice possessing dominant (Dom) or submissive (Sub) behavior features. Sub mice exhibit asocial, depressive- and anxiety-like behaviors, as well as systemic inflammation, all of which are shaped by their impaired gut microbiota composition. METHODS: An age-dependent comparative analysis of the gut microbiota composition of Dom and Sub mice was performed using 16S rRNA sequencing, from early infancy to adulthood. Dom and Sub gastrointestinal (GI) tract anatomy, function, and immune profiling analyses were performed using histology, RT-PCR, flow cytometry, cytokine array, and dextran-FITC permeability assays. Short chain fatty acids (SCFA) levels in the colons of Dom and Sub mice were quantified using targeted metabolomics. To support our findings, adult Sub mice were orally treated with hyaluronic acid (HA) (30 mg/kg) or with the non-steroidal anti-inflammatory agent celecoxib (16 mg/kg). RESULTS: We demonstrate that from early infancy the Sub mouse gut microbiota lacks essential bacteria for immune maturation, including Lactobacillus and Bifidobacterium genera. Furthermore, from birth, Sub mice possess a thicker colon mucin layer, and from early adulthood, they exhibit shorter colonic length, altered colon integrity with increased gut permeability, reduced SCFA levels and decreased regulatory T-cells, compared to Dom mice. Therapeutic intervention in adult Sub mice treated with HA, celecoxib, or both agents, rescued Sub mice phenotypes. HA treatment reduced Sub mouse gut permeability, increased colon length, and improved mouse social behavior deficits. Treatment with celecoxib increased sociability, reduced depressive- and anxiety-like behaviors, and increased colon length, and a combined treatment resulted in similar effects as celecoxib administered as a single agent. CONCLUSIONS: Overall, our data suggest that treating colon inflammation and decreasing gut permeability can restore gut physiology and prevent social deficits later in life. These findings provide critical insights into the importance of early life gut microbiota in shaping gut immunity, functionality, and social behavior, and may be beneficial for the development of future therapeutic strategies.


Asunto(s)
Celecoxib , Colon , Microbioma Gastrointestinal , Ácido Hialurónico , Inflamación , Conducta Social , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Celecoxib/farmacología , Celecoxib/administración & dosificación , Ratones , Colon/efectos de los fármacos , Colon/microbiología , Inflamación/tratamiento farmacológico , Masculino , Conducta Animal/efectos de los fármacos , ARN Ribosómico 16S/genética
3.
Environ Toxicol ; 38(12): 2993-3005, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37598416

RESUMEN

3,3',4,4',5-pentachlorobiphenyl (PCB126) is widely distributed, non-degradable and bioaccumulative, which can affect the function of tissues and organs of the living organisms. Melatonin (MT) is a sort of indole neurohormone that is mainly secreted by the pineal gland. Numerous studies have shown that MT can alleviate intestinal injury through various mechanisms such as antioxidant, anti-inflammatory, and anti-apoptosis. For the above reasons, the aim of this study is to explore the mechanism of intestinal injury in mice after exposure to PCB126 as well as the antagonistic effect of MT. Mice were respectively fed PCB126 (0.326 mg/kg) and/or MT (10 mg/kg) in vivo. In vitro, colonic epithelial cells (MCEC) were treated with PCB126 (150 µM) and/or MT (2 mM). We found that the microscopic structure of colon tissue was impaired after exposure to PCB126. The levels of oxidative stress, the protein and mRNA levels of expression of inflammatory related factors were significantly increased and the expression levels of intestinal tight junction protein were decreased. Notably, MT can promote Nrf2/HO-1 expression level and reduce the colonic injury caused by PCB126. Further in vitro treatment with reactive oxygen species inhibitors (NAC) showed that it significantly alleviated PCB126-induced in MCEC cell damage. In summary, the above results suggested that MT alleviates PCB126-induced colon inflammation by inhibiting the overproduction of reactive oxygen species (ROS) and up-regulating the expression level of intestinal tight junction protein. Our results contribute to the further comprehension of the intestinal toxicity effects of PCB126 and the significant role of MT in preserving the mechanisms of intestinal injury.


Asunto(s)
Melatonina , Ratones , Animales , Melatonina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Colon/metabolismo , Proteínas de Uniones Estrechas
4.
J Hazard Mater ; 459: 132057, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37467611

RESUMEN

Both cholesterol and oxidized cholesterol (OXC) are present in human diets. The incidence of inflammatory bowel diseases (IBDs) is increasing in the world. The present study was to investigate the mechanism by which OXC promotes colitis using C57BL/6 mice as a model. Results shown that more severe colitis was developed in OXC-treated mice with the administration of dextran sulfate sodium (DSS) in water. Direct effects of short-term OXC exposure on gut barrier or inflammation were not observed in healthy mice. However, OXC exposure could cause gut microbiota dysbiosis with a decrease in the relative abundance of short-train fatty acids (SCFAs)-producing bacteria (Lachnospiraceae_NK4A136_group and Blautia) and an increase in the abundance of some potential harmful bacteria (Bacteroides). OXC-induced symptoms of colitis were eliminated when mice were administered with antibiotic cocktails, indicating the promoting effect of OXC on DSS-induced colitis was mediated by its effect on gut microbiota. Moreover, bacteria-depleted mice colonized with gut microbiome from OXC-DSS-exposed mice exhibited a severe colitis, further proving the gut dysbiosis caused by OXC exposure was the culprit in exacerbating the colitis. It was concluded that dietary OXC exposure increased the susceptibility of colitis in mice by causing gut microbiota dysbiosis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Disbiosis/inducido químicamente , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/microbiología , Bacterias , Colesterol/toxicidad , Colon , Sulfato de Dextran/toxicidad
5.
Plants (Basel) ; 12(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903991

RESUMEN

Pelargonium quercetorum is a medicinal plant traditionally used for treating intestinal worms. In the present study, the chemical composition and bio-pharmacological properties of P. quercetorum extracts were investigated. Enzyme inhibition and scavenging/reducing properties of water, methanol, and ethyl acetate extracts were assayed. The extracts were also studied in an ex vivo experimental model of colon inflammation, and in this context the gene expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNFα) were assayed. Additionally, in colon cancer HCT116 cells, the gene expression of transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), possibly involved in colon carcinogenesis, was conducted as well. The extracts showed a different qualitative and quantitative content of phytochemicals, with water and methanol extracts being richer in total phenols and flavonoids, among which are flavonol glycosides and hydroxycinnamic acids. This could explain, at least in part, the higher antioxidant effects shown by methanol and water extracts, compared with ethyl acetate extract. By contrast, the ethyl acetate was more effective as cytotoxic agent against colon cancer cells, and this could be related, albeit partially, to the content of thymol and to its putative ability to downregulate TRPM8 gene expression. Additionally, the ethyl acetate extract was effective in inhibiting the gene expression of COX-2 and TNFα in isolated colon tissue exposed to LPS. Overall, the present results support future studies for investigating protective effects against gut inflammatory diseases.

6.
Sci Total Environ ; 872: 162188, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36781136

RESUMEN

Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride products such as feed piping, packing bag, and medical consumable. Our previous studies have demonstrated that DEHP exposure reduced the concentration of nicotinamide adenine dinucleotide (NAD+) in pregnant mice serum, which cuts off the source of NAD+ to placenta and results fetal growth restriction. However, the mechanism of serum NAD+ depletion by DEHP remains elusive. This study investigated the intestinal mechanism of NAD+ shortage-induced by DEHP in pregnant mice. The transcriptome results implicated that the mRNA level of oxidative response genes Cyp1a1, Gsto2, Trpv1 and Trpv3 were upregulated in colon. These changes induced intestinal inflammation. Transmission Electron Microscopy results displayed that DEHP destroyed the tight junctions and cell polarity of colonic epithelial cells. These dysfunctions diminished the expression of NAD+ precursor transporters SLC12A8, SLC5A8, SLC7A5, and the NAD+ biosynthetic key enzymes NAMPT, NMNAT1-3, and TDO2 in colonic epithelial cells. Analysis of the gut microbiota showed that DEHP led to the dysbiosis of gut microbiota, reducing the relative abundance of Prevotella copri which possesses the VB3 biosynthetic pathway. Therefore, maternal DEHP exposure during pregnancy decreased the transportation of NAD+ precursors from enteric cavity to colonic epithelial cells, and inhibited the synthesis of NAD+ in colonic epithelial cells. Meanwhile, DEHP reduced the NAD+ precursors provided by gut microbiota. Eventually, serum NAD+ content was lowered. Taken together, our findings provide a new insight for understanding the intestinal mechanisms by which DEHP affects serum NAD+ levels.


Asunto(s)
Dietilhexil Ftalato , Nicotinamida-Nucleótido Adenililtransferasa , Embarazo , Femenino , Ratones , Animales , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , NAD/metabolismo , Placenta/metabolismo , Plastificantes/metabolismo , Colon/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo
7.
Biomaterials ; 292: 121937, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36495803

RESUMEN

Smart delivery systems with stimuli-responsive capability are able to improve the bioaccessibility through increasing the solubility, physicochemical stability and biocompatibility of bioactive compounds. In this study, the astaxanthin nanoparticles with reactive oxygen species (ROS) and pH dual-response function were design and constructed using poly (propylene sulfide) covalently modified sodium alginate as carriers based on ultrasonic assisted self-assembly strategy. Atomic force microscope and scanning electron microscope analysis showed that the nanoparticles were spherical in shape with a size of around 260 nm. Meanwhile, the astaxanthin nanoparticles showed both pH and ROS stimuli-responsive release characteristics. In vitro cell experiments showed that astaxanthin nanoparticles significantly inhibited the production of ROS and mitochondrial depolarization induced by oxidative stress. In vivo colitis experiment of mice revealed that astaxanthin nanoparticles could significantly relieve colitis, protect the integrity of colon tissue and restore the expression of tight junction proteins ZO-1 and occludin. The abundance of Lactobacillus and Lachnospiraceae, and the ratio of Firmicutes/Bacteroidota of gut microbiota were significantly improved after intervention of the stimuli-responsive astaxanthin nanoparticles. This work provided a simple strategy for constructing ROS/pH dual response delivery system, which provided an experimental basis for improving the oral bioavailability of hydrophobic active compounds.


Asunto(s)
Colitis , Nanopartículas , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Colitis/tratamiento farmacológico , Concentración de Iones de Hidrógeno
8.
Front Endocrinol (Lausanne) ; 14: 1269121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239991

RESUMEN

Introduction: Gestational hypothyroxinemia (HTX) is a condition that occurs frequently at the beginning of pregnancy, and it correlates with cognitive impairment, autism, and attentional deficit in the offspring. Evidence in animal models suggests that gestational HTX can increase the susceptibility of the offspring to develop strong inflammation in immune-mediated inflammatory diseases. Ulcerative colitis (UC) is a frequent inflammatory bowel disease with unknown causes. Therefore, the intensity of ulcerative colitis-like disorder (UCLD) and the cellular and molecular factors involved in proinflammatory or anti-inflammatory responses were analyzed in the offspring gestated in HTX (HTX-offspring) and compared with the offspring gestated in euthyroidism (Control-offspring). Methods: Gestational HTX was induced by the administration of 2-mercapto-1-methylimidazole in drinking water to pregnant mice during E10-E14. The HTX-offspring were induced with UCLD by the acute administration of dextran sodium sulfate (DSS). The score of UCLD symptomatology was registered every day, and colon histopathology, immune cells, and molecular factors involved in the inflammatory or anti-inflammatory response were analyzed on day 6 of DSS treatment. Results: The HTX-offspring displayed earlier UCLD pathological symptoms compared with the Control-offspring. After 6 days of DSS treatment, the HTX-offspring almost doubled the score of the Control-offspring. The histopathological analyses of the colon samples showed signs of inflammation at the distal and medial colon for both the HTX-offspring and Control-offspring. However, significantly more inflammatory features were detected in the proximal colon of the HTX-offspring induced with UCLD compared with the Control-offspring induced with UCLD. Significantly reduced mRNA contents encoding for protective molecules like glutamate-cysteine ligase catalytic subunit (GCLC) and mucin-2 (MUC-2) were found in the colon of the HTX-offspring as compared with the Control-offspring. Higher percentages of Th17 lymphocytes were detected in the colon tissues of the HTX-offspring induced or not with UCLD as compared with the Control-offspring. Discussion: Gestational HTX accelerates the onset and increases the intensity of UCLD in the offspring. The low expression of MUC-2 and GCLC together with high levels of Th17 Lymphocytes in the colon tissue suggests that the HTX-offspring has molecular and cellular features that favor inflammation and tissue damage. These results are important evidence to be aware of the impact of gestational HTX as a risk factor for UCLD development in offspring.


Asunto(s)
Colitis Ulcerosa , Hipotiroidismo , Embarazo , Femenino , Masculino , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Inflamación/patología , Antiinflamatorios/farmacología , Sulfato de Dextran/efectos adversos
10.
J Anim Sci Biotechnol ; 13(1): 125, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36329539

RESUMEN

BACKGROUND: Endoplasmic reticulum (ER) stress and autophagy are implicated in the pathophysiology of intestinal inflammation; however, their roles in intrauterine growth retardation (IUGR)-induced colon inflammation are unclear. This study explored the protective effects of natural stilbene pterostilbene on colon inflammation using the IUGR piglets and the tumor necrosis factor alpha (TNF-α)-treated human colonic epithelial cells (Caco-2) by targeting ER stress and autophagy. RESULTS: Both the IUGR colon and the TNF-α-treated Caco-2 cells exhibited inflammatory responses, ER stress, and impaired autophagic flux (P < 0.05). The ER stress inducer tunicamycin and the autophagy inhibitor 3-methyladenine further augmented inflammatory responses and apoptosis in the TNF-α-treated Caco-2 cells (P < 0.05). Conversely, pterostilbene inhibited ER stress and restored autophagic flux in the IUGR colon and the TNF-α-treated cells (P < 0.05). Pterostilbene also prevented the release of inflammatory cytokines and nuclear translocation of nuclear factor kappa B p65, reduced intestinal permeability and cell apoptosis, and facilitated the expression of intestinal tight junction proteins in the IUGR colon and the TNF-α-treated cells (P < 0.05). Importantly, treatment with tunicamycin or autophagosome-lysosome binding inhibitor chloroquine blocked the positive effects of pterostilbene on inflammatory response, cell apoptosis, and intestinal barrier function in the TNF-α-exposed Caco-2 cells (P < 0.05). CONCLUSION: Pterostilbene mitigates ER stress and promotes autophagic flux, thereby improving colon inflammation and barrier dysfunction in the IUGR piglets and the TNF-α-treated Caco-2 cells.

11.
Front Nutr ; 9: 980204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118776

RESUMEN

This study aimed to investigate the effect of oxidized beef protein on colon health. C57BL/6 mice were fed diets containing in vitro oxidized beef protein (carbonyl content 5.83/9.02 nmol/mg protein) or normal beef protein (control group, carbonyl content 2.27 nmol/mg protein) for 10 weeks. Histological observations showed that oxidized beef protein diet induced notable inflammatory cell infiltrations in colon. The analysis of high-throughput sequencing indicated oxidized beef protein largely altered the composition of gut microbiota (GM) by increasing proinflammatory bacteria (Desulfovibrio, Bacteroides, Enterorhabdus) while reducing beneficial bacteria (Lactobacillus, Akkermansia). In addition, oxidized beef protein remarkably increased protein fermentation in the colon, which was evidenced by the elevated i-butyrate, i-valerate, and ammonia levels in feces. Furthermore, consuming oxidized beef protein destroyed colon barrier functions by decreasing tight junction proteins expression. These changes in colonic ecosystem activated the proinflammatory pathway of lipopolysaccharide/toll-like receptor-4/nuclear factor kappa B (LPS/TLR-4/NF-κB), eventually leading to colonic inflammatory damage in mice. Taken together, these results imply that consuming oxidized beef protein detrimentally regulates GM and impairs colon health.

12.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628158

RESUMEN

Neuroinflammation underlies neurodegenerative diseases. Herein, we test whether acute colon inflammation activates microglia and astrocytes, induces neuroinflammation, disturbs neuron intrinsic electrical properties in the primary motor cortex, and alters motor behaviors. We used a rat model of acute colon inflammation induced by dextran sulfate sodium. Inflammatory mediators and microglial activation were assessed in the primary motor cortex by PCR and immunofluorescence assays. Electrophysiological properties of the motor cortex neurons were determined by whole-cell patch-clamp recordings. Motor behaviors were examined using open-field and rotarod tests. We show that the primary motor cortex of rats with acute colon inflammation exhibited microglial and astrocyte activation and increased mRNA abundance of interleukin-6, tumor necrosis factor-alpha, and both inducible and neuronal nitric oxide synthases. These changes were accompanied by a reduction in resting membrane potential and rheobase and increased input resistance and action potential frequency, indicating motor neuron hyperexcitability. In addition, locomotion and motor coordination were impaired. In conclusion, acute colon inflammation induces motor cortex microglial and astrocyte activation and inflammation, which led to neurons' hyperexcitability and reduced motor coordination performance. The described disturbances resembled some of the early features found in amyotrophic lateral sclerosis patients and animal models, suggesting that colon inflammation might be a risk factor for developing this disease.


Asunto(s)
Colitis , Corteza Motora , Animales , Colitis/inducido químicamente , Colitis/patología , Humanos , Inflamación/patología , Corteza Motora/patología , Neuronas Motoras/patología , Enfermedades Neuroinflamatorias , Ratas
13.
J Control Release ; 342: 372-387, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35038495

RESUMEN

As a fat-soluble carotenoid, astaxanthin has excellent antioxidant and anti-inflammation biological activities, but its poor biocompatibility and low stability limit application of astaxanthin in the food industry. In this study, cauliflower-like carriers (CCs) were constructed based on caseinate, chitosan-triphenylphosphonium (TPP) and sodium alginate through an electrostatic self-assembly method to improve the biocompatibility, stability and targeting transport properties of astaxanthin. The smart CCs showed pH-response release and mitochondrial targeted characteristics. In vitro studies demonstrated that the CCs could improve the internalization of astaxanthin, and significantly inhibited the excessive production of reactive oxygen species and the depolarization of mitochondrial membrane potential caused by oxidative stress. In vivo studies revealed that the astaxanthin-loaded CCs could effectively relieve the colitis induced by dextran sodium sulfate and protect the integrity of the colon tissue structure. The astaxanthin-loaded CCs could significantly inhibit the expression of inflammation factors such as interleukin-1ß, interleukin-6, tumor necrosis factor alpha, cyclooxygenase-2, myeloperoxidase, inducible nitric oxide synthase, and nitric oxide. Moreover, the astaxanthin-loaded CCs could maintain the expression of zonula occludens-1, increase the abundance of Firmicutes and Lactobacillaceae in the intestine. In a word, the constructed astaxanthin delivery system provided a potential application for the oral uptake hydrophobic bio-activator in intervention of ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon , Sulfato de Dextran/farmacología , Humanos , Inflamación/tratamiento farmacológico , Xantófilas/química , Xantófilas/uso terapéutico
14.
J Agric Food Chem ; 69(44): 13034-13044, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34723501

RESUMEN

Dietary ethanolamine plasmalogen (PlsEtn) has been reported to have several health benefits; however, its functional role during colon pathophysiology remains elusive. The present study investigated the anticolitis effect of dietary ethanolamine glycerophospholipids (EtnGpls) with high PlsEtn from ascidian muscle (86.2 mol %) and low PlsEtn from porcine liver (7.7 mol %) in dextran sulfate sodium (DSS)-induced colitis in mice. Dietary EtnGpls lowered myeloperoxidase activity, thiobarbituric acid-reactive substances, proinflammatory cytokines and proapoptosis-related protein levels in colon mucosa after 16 days of DSS treatment, with ascidian muscle (0.1% EtnGpl in diet) showing higher suppression than porcine liver (0.1% EtnGpl in diet). Moreover, dietary EtnGpls suppressed DSS symptoms after 38 days of DSS treatment as evidenced by increased body weight, colon length, and ameliorated colon mucosa integrity. Additionally, dietary EtnGpls elevated short-chain fatty acid production in DSS-treated mice. Altogether, these results indicate the potential of utilizing diets with abundant PlsEtn for the prevention of colon inflammation-related disorders.


Asunto(s)
Colitis , Animales , Antiinflamatorios/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Colon/metabolismo , Sulfato de Dextran/metabolismo , Dieta , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Plasmalógenos , Porcinos , Compuestos de Vinilo
15.
Mol Nutr Food Res ; 65(24): e2100533, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34704372

RESUMEN

SCOPE: Inflammatory bowel disease and colorectal carcinogenesis (CRC) are common diseases without effective prevention approach. 3-Hydroxybutyrate (3HB) reported to have multiple functions as an oral food supplement. This study observes that 3HB prevents mouse colitis and CRC. METHODS AND RESULTS: The sensitivity of wild type (WT) and GPR109a-/- mice to colitis is compared using dextran sulfate sodium salt (DSS)-induced colitis model. Flow cytometry showed that 3HB cellular surface receptor GPR109a that can decrease the percentage of M1 macrophages from 50% of the DSS-induced acute colitis mouse group to 42% DSS+3HB group mediating the inhibitory effect on inflammation. Bone marrow transplantation experiments further demonstrated that the function of 3HB depended on bone marrow cells. Subsequently, the sensitivity of WT and GPR109a-/- mice to CRC is compared using an azoxymethane-DSS-induced CRC mouse model. It is found that the activation of GPR109a inhibited CRC, depended on reduced myeloid-derived suppressor cells accumulation from 27% of the DSS group to 19% of the DSS+3HB group studied using flow cytometry. CONCLUSION: It is concluded that 3HB significantly suppresses colonic inflammation and carcinogenesis, promising to benefit colon disease prevention in form of a food supplement.


Asunto(s)
Colitis , Neoplasias del Colon , Ácido 3-Hidroxibutírico , Animales , Azoximetano , Carcinogénesis , Colitis/inducido químicamente , Colitis/prevención & control , Colon , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/prevención & control , Sulfato de Dextran/toxicidad , Suplementos Dietéticos , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Endogámicos C57BL
16.
Cell Mol Immunol ; 18(2): 350-362, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32094504

RESUMEN

Loss of the colonic inner mucus layer leads to spontaneously severe colitis and colorectal cancer. However, key host factors that may control the generation of the inner mucus layer are rarely reported. Here, we identify a novel function of TRIM34 in goblet cells (GCs) in controlling inner mucus layer generation. Upon DSS treatment, TRIM34 deficiency led to a reduction in Muc2 secretion by GCs and subsequent defects in the inner mucus layer. This outcome rendered TRIM34-deficient mice more susceptible to DSS-induced colitis and colitis-associated colorectal cancer. Mechanistic experiments demonstrated that TRIM34 controlled TLR signaling-induced Nox/Duox-dependent ROS synthesis, thereby promoting the compound exocytosis of Muc2 by colonic GCs that were exposed to bacterial TLR ligands. Clinical analysis revealed that TRIM34 levels in patient samples were correlated with the outcome of ulcerative colitis (UC) and the prognosis of rectal adenocarcinoma. This study indicates that TRIM34 expression in GCs plays an essential role in generating the inner mucus layer and preventing excessive colon inflammation and tumorigenesis.


Asunto(s)
Proteínas Portadoras/fisiología , Neoplasias Asociadas a Colitis/prevención & control , Colitis/prevención & control , Colon/patología , Células Caliciformes/patología , Moco/fisiología , Animales , Carcinogénesis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Colitis/etiología , Neoplasias Asociadas a Colitis/etiología , Neoplasias Asociadas a Colitis/patología , Colon/inmunología , Colon/metabolismo , Células Caliciformes/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucina 2/metabolismo
17.
Eur J Nutr ; 60(3): 1669-1677, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32808061

RESUMEN

PURPOSE: Inflammatory bowel diseases are associated with an increase in the whole-body protein turnover, thus possibly requiring an additional supply of dietary proteins. Our aim was to evaluate whether increasing dietary protein content could alleviate protein metabolism alterations in the injured splanchnic and peripheral tissues during colitis and spontaneous mucosal healing. METHODS: Mice with acute chemically induced colitis received either a normal protein (P14, 14% as energy), a moderately (P30, 30%) and a very high-protein (P53, 55%) diets. At different times after the challenge, protein synthesis rate was determined in tissues using a flooding dose of 13C valine. RESULTS: Colon, liver and spleen protein synthesis rates were significantly increased after colitis induction, while being decreased in the caecum, kidneys and muscle. Contrastingly to the two other diets, P30 diet consumption allowed faster recovery of the animals, and this coincided with a rapid resaturation of the initial protein synthesis in the colon. In the other tissues studied, the high-protein diets show different effects depending on the dietary protein content consumed and on the examined tissues, with a general trend of P53 in lowering anabolism rates. CONCLUSION: This study highlights the severe impact of acute colonic inflammation on protein metabolism in different organs. In addition, dietary protein content modulated the recovery of the initial protein synthesis rate in the various tissues following colitis induction. P30 diet consumption notably showed a better ability to alleviate protein metabolism perturbations induced by colitis, that may explain its documented beneficial effect on colon mucosal healing.


Asunto(s)
Colitis , Animales , Ciego , Colitis/inducido químicamente , Colon , Sulfato de Dextran , Proteínas en la Dieta , Modelos Animales de Enfermedad , Mucosa Intestinal , Ratones
18.
Acta Pharmacol Sin ; 42(7): 1124-1138, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32811965

RESUMEN

Intestinal fibrosis is a common complication of inflammatory bowel disease (IBD) and is defined as an excessive accumulation of scar tissue in the intestinal wall. Intestinal fibrosis occurs in both forms of IBD: ulcerative colitis and Crohn's disease. Small-molecule inhibitors targeting hypoxia-inducing factor (HIF) prolyl-hydroxylases are promising for the development of novel antifibrotic therapies in IBD. Herein, we evaluated the therapeutic efficacy of hydroxamate of betulinic acid (BHA), a hypoxia mimetic derivative of betulinic acid, against IBD in vitro and in vivo. We showed that BAH (5-20 µM) dose-dependently enhanced collagen gel contraction and activated the HIF pathway in NIH-3T3 fibroblasts; BAH treatment also prevented the loss of trans-epithelial electrical resistance induced by proinflammatory cytokines in Caco-2 cells. In two different murine models (TNBS- and DSS-induced IBD) that cause colon fibrosis, oral administration of BAH (20, 50 mg/kg·d, for 17 days) prevented colon inflammation and fibrosis, as detected using immunohistochemistry and qPCR assays. BAH-treated animals showed a significant reduction of fibrotic markers (Tnc, Col1a2, Col3a1, Timp-1, α-SMA) and inflammatory markers (F4/80+, CD3+, Il-1ß, Ccl3) in colon tissue, as well as an improvement in epithelial barrier integrity and wound healing. BHA displayed promising oral bioavailability, no significant activity against a panel of 68 potential pharmacological targets and was devoid of genotoxicity and cardiotoxicity. Taken together, our results provide evidence that oral administration of BAH can alleviate colon inflammation and colitis-associated fibrosis, identifying the enhancement of colon barrier integrity as a possible mechanism of action, and providing a solid rationale for additional clinical studies.


Asunto(s)
Antiinflamatorios/uso terapéutico , Fibrosis/prevención & control , Ácidos Hidroxámicos/uso terapéutico , Inflamación/prevención & control , Enfermedades Inflamatorias del Intestino/complicaciones , Triterpenos Pentacíclicos/uso terapéutico , Animales , Antiinflamatorios/farmacocinética , Células CACO-2 , Colon/efectos de los fármacos , Colon/patología , Sulfato de Dextran , Fibrosis/etiología , Fibrosis/patología , Fármacos Gastrointestinales/farmacocinética , Fármacos Gastrointestinales/uso terapéutico , Expresión Génica/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/farmacocinética , Inflamación/etiología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células 3T3 NIH , Triterpenos Pentacíclicos/farmacocinética , Ácido Trinitrobencenosulfónico , Ácido Betulínico
19.
Life Sci ; 262: 118555, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33035579

RESUMEN

AIMS: In the current study, resveratrol-loaded PLGA nanoparticles targeted with folate were developed in order to protect resveratrol from fast degradation, modify its pharmacokinetics and increase its intestinal permeation. Then, the therapeutic efficacy of the prepared system was evaluated in suppression of colon inflammation on TNBS-induced colitis model. MAIN METHODS: In this regard, resveratrol was encapsulated in PLGA and FA-conjugated PLGA in order to prepare non-targeted (PLGA-RSV) and targeted (PLGA-FA-RSV) platforms, respectively. KEY FINDINGS: Obtained results demonstrated that the prepared formulations encapsulated the resveratrol with high encapsulation efficiency of 90.7% ± 5.1% for PLGA-RSV and 59.1% ± 3.3% for PLGA-FA-RSV. In vitro release experiment showed that the prepared formulations were capable of retaining good amount of resveratrol under the simulated gastric condition (HCl 0.1 N, pH 1.2), while significant amount of resveratrol was released under simulated intestinal condition (PBS, pH 7.4). The trans-well permeability rates through Caco-2 monolayer during 180 min, was determined to be 4.5%, 61% and 99% for resveratrol, PLGA-RSV and PLGA-FA-RSV respectively. The pathological analysis of the rat intestinal sections (hematoxylin & eosin staining) at 7th day post-TNBS colonic inflammation induction illustrated that the oral administrations of FA-PLGA-RSV and PLGA-RSV were able to significantly inhibit the inflammation and reduce neutrophil and lymphocytes accumulation. It is worth noting that the folate-targeted system demonstrated highest efficacy in suppressing colon inflammation. SIGNIFICANCE: It could be concluded that the encapsulation of resveratrol into biodegradable folate-targeted PLGA nanoparticles could introduce a potent platform in suppressing colonic inflammation thus offering a great capability for clinical translation.


Asunto(s)
Ácido Fólico/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Nanopartículas , Resveratrol/administración & dosificación , Administración Oral , Animales , Células CACO-2 , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Enfermedades Inflamatorias del Intestino/fisiopatología , Masculino , Permeabilidad , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas , Resveratrol/farmacología
20.
Visc Med ; 36(3): 212-219, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32775352

RESUMEN

INTRODUCTION: Alcohol increases the risk of colon cancer. Colonic inflammation mediates the effects of alcohol on colon carcinogenesis. Circadian rhythm disruption enhances the alcohol's effect on colonic inflammation and cancer. OBJECTIVE: Here, we investigate the diurnal variation of lymphocyte infiltration in the colonic mucosa in response to alcohol. METHODS: Sixty C57BL6/J mice were fed a chow diet, and gavaged with alcohol at a specific time once per day for 3 consecutive days. Immunohistochemistry and immunofluorescence staining were used to quantify total, effector, and regulatory T cells in the colon. Student's t test, one-way ANOVA, and two-way ANOVA were used to determine significance. RESULTS: Following the alcohol binge, the composition of immune T cell subsets in the mouse colon was time-dependent. Alcohol did not alter the total number of CD3+ T cells. However, upon alcohol treatment, T-bet+ T helper 1 (Th1) cells appeared to dominate the T cell population following a reduction in Foxp3+ regulatory T cell (Treg) numbers. Depletion of Tregs was time-dependent, and their numbers were dramatically reduced when alcohol was administered during the rest phase. A reduction in Tregs significantly increased the Th1/Treg ratio, resulting in a more proinflammatory milieu. CONCLUSIONS: Alcohol enhanced the proinflammatory profile in the colon mucosa, as demonstrated by a higher T-bet+/Foxp3+ ratio, especially during the rest phase. These findings may partly account for the interaction of circadian rhythm disruption with alcohol in colon inflammation and cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA