Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Pestic Biochem Physiol ; 204: 106086, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277399

RESUMEN

Actinomycetes have emerged as significant biocontrol resources due to their rich array of bioactive natural products. While much research has historically focused on secondary metabolites isolated from their fermentation broth, there remains a dearth of reports on their volatile organic compounds (VOCs). Here, strain ML27, isolated from soil, was identified as Streptomyces albidoflavus based on morphological features, physiological, biochemical, and molecular characteristics (16S rRNA, atpD, recA, and rpoB gene sequences). VOCs from S. albidoflavus strain ML27 were effectively captured using solid-phase microextraction (SPME) and tentatively identified through gas chromatography-mass spectrometry (GC/MS). Among these compounds, 4-ethyl-1,2-dimethoxybenzene exhibited broad-spectrum antifungal activity and demonstrated efficacy in controlling citrus anthracnose, with a control efficacy of 86.67%. Furthermore, the inhibitory mechanism of 4-ethyl-1,2-dimethoxybenzene against Colletotrichum gloeosporioides was revealed. Results indicated that 4-ethyl-1,2-dimethoxybenzene induced swelling, deformity, and breakage in C. gloeosporioides mycelia, and significantly inhibited spore germination. Transcriptome analysis revealed that 4-ethyl-1,2-dimethoxybenzene inhibited the growth and development of C. gloeosporioides primarily by disrupting energy metabolism and the integrity of the cell wall and membrane. Based on these results, it is promising to develop 4-ethyl-1,2-dimethoxybenzene as a novel biopesticide for controlling citrus anthracnose.


Asunto(s)
Colletotrichum , Enfermedades de las Plantas , Streptomyces , Colletotrichum/efectos de los fármacos , Streptomyces/metabolismo , Streptomyces/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Citrus/microbiología , Anisoles/farmacología , Anisoles/química , Fungicidas Industriales/farmacología , Antifúngicos/farmacología
2.
Pestic Biochem Physiol ; 204: 106093, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277419

RESUMEN

Colletotrichum gloeosporioides is the causal pathogen for the devastating walnuts anthracnose. A novel quinone inside inhibitor (QiI) fungicide florylpicoxamid has strong inhibitory efficacy against C. gloeosporioides. This study looked into the resistance risk and mechanism of C. gloeosporioides to florylpicoxamid. The basal level sensitivity of C. gloeosporioides isolates (n = 102) to florylpicoxamid was established with an average 50% mycelial growth inhibition concentration (EC50) value of 0.069 ± 0.035 µg/mL. Six stable florylpicoxamid-resistant mutants with resistance factors of >1000 were produced. The fitness of every mutant was much lower than that of their parental isolates. In general, the resistance risk of C. gloeosporioides to florylpicoxamid would be moderate. Molecular docking results revealed that the amino acid substitutions A37V, and S207L in CgCytb lead to a reduction in the binding affinity between florylpicoxamid and CgCytb, indicating that these two mutations (S207L and A37V in CgCytb) indeed confer florylpicoxamid resistance in C. gloeosporioides. These findings offer a fresh viewpoint on the mechanism underlying QiI fungicide resistance and could support the prudent application of florylpicoxamid in the future to combat walnut anthracnose.


Asunto(s)
Colletotrichum , Farmacorresistencia Fúngica , Fungicidas Industriales , Juglans , Simulación del Acoplamiento Molecular , Colletotrichum/efectos de los fármacos , Colletotrichum/genética , Juglans/microbiología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Enfermedades de las Plantas/microbiología , Mutación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pueblos del Este de Asia
3.
Molecules ; 29(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124920

RESUMEN

Here, we report for the first time on the mechanisms of action of the essential oil of Ruta graveolens (REO) against the plant pathogen Colletotrichum gloeosporioides. In particular, the presence of REO drastically affected the morphology of hyphae by inducing changes in the cytoplasmic membrane, such as depolarization and changes in the fatty acid profile where straight-chain fatty acids (SCFAs) increased by up to 92.1%. In addition, REO induced changes in fungal metabolism and triggered apoptosis-like responses to cell death, such as DNA fragmentation and the accumulation of reactive oxygen species (ROS). The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, ß-galactosidase, ß-glucosidase, and N-acetyl-ß-glucosaminidase, was significantly reduced in the presence of REO. In addition, C. gloeosporioides activated naphthol-As-BI phosphohydrolase as a mechanism of response to REO stress. The data obtained here have shown that the essential oil of Ruta graveolens has a strong antifungal effect on C. gloeosporioides. Therefore, it has the potential to be used as a surface disinfectant and as a viable replacement for fungicides commonly used to treat anthracnose in the postharvest testing phase.


Asunto(s)
Antifúngicos , Colletotrichum , Aceites Volátiles , Especies Reactivas de Oxígeno , Ruta , Colletotrichum/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Ruta/química , Antifúngicos/farmacología , Antifúngicos/química , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Plantas/microbiología , Pruebas de Sensibilidad Microbiana , Fragmentación del ADN/efectos de los fármacos
4.
J Fungi (Basel) ; 10(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39194876

RESUMEN

Endophytic fungi can be used as a source of herbal antioxidants to overcome the limitations of low yield and lengthy growth cycles associated with using plants as raw materials for antioxidant production. Papaya fruit is often susceptible to infection by Colletotrichum gloeosporioides after harvest, leading to postharvest rot. Endophytic fungi were extracted with ethyl acetate, and the initial screening concentration was 100 mg/L. Seven strains were identified, with scavenging rates exceeding 50% and strong antioxidant activity. The IC50 values in DPPH and ABTS free radical scavenging assays ranged from 19.72 to 84.06 mg/L and from 14.34 to 64.63 mg/L, respectively. Strain Y17 exhibited robust antioxidant activity (IC50 < 20 mg/L) and was identified as Penicillium rolfsii (MT729953) through ITS sequencing. Treatment of papaya fruit wounds with a fermentation broth of strain Y17 significantly inhibited the infection and colonization of anthracnose pathogens, resulting in a slowed disease incidence rate. This promoted the activity of protective enzymes, such as CAT, POD, and SOD, in the papaya fruit and slowed down the rate of MDA accumulation. This strain, which was found to have antioxidant activity in this study, has the potential to control anthracnose in papaya and has value in terms of further development and utilization.

5.
Plant Dis ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082927

RESUMEN

Cercis chinensis Bunge, commonly used as an ornamental plant, is native to southeastern China and extensively cultivated in gardens across major cities in the country. In August 2023, a new high-incidence disease was discovered at Huangshan University in Huangshan, Anhui Province, China. The symptoms initially began as small brown spots, which gradually expanded into large irregular brown spots with black-brown edges. The disease was investigated at both Jilingshan Park and Huangshan University, where C. chinensis Bunge was planted, revealing an average incidence rate of was 85 % at these sites. Seventy two leaf tissue samples (3 to 4 mm²) were collected from the margins of the lesion and subjected to surface sterilization with 75% ethanol for 30 seconds followed by 1% sodium hypochlorite for 90 seconds. Subsequently, the tissues were rinsed with sterile H2O, placed on potato dextrose agar (PDA) medium, and incubated at 25℃ for 5 days. The same fungus was isolated from 90% of the tissues, and pure cultures were obtained by monosporic isolation. Representative isolates ZJ 2-1, ZJ 2-2 and ZJ 2-3 were selected for morphological and molecular characterization. The colonies displayed a color range from white to gray, with white margins and aerial hyphae, while the reverse side of the colonies appeared gray to brown. Conidia were cylindrical, aseptate, with obtuse to slightly rounded ends, measuring 15.8±1.8×4.7±0.56 µm (n = 50). The morphological characteristics were generally consistent with those of Colletotrichum gloeosporioides species complex (Weir et al. 2012). Five conserved regions of isolates (ZJ 2-1, ZJ 2-2 and ZJ 2-3), including the internal transcribed spacer (ITS), glutamine synthase (GS), calmodulin (CAL), actin (ACT), and chitin synthase 1(CHS1) gene regions, were amplified using specific primers ITS1/ITS4 (Gardes et al. 1993), GSR1/GSF1 (Guerber et al. 2003), CL1C/CL2C (Li et al. 2018), ACT-512F/ACT-783R, and CHS-79F/CHS-345R (Zhu et al. 2019), respectively. Using the BLAST, ITS, GS, CAL, ACT and CHS1 gene sequences (GenBank accession nos. PP514751, PP448025, PP448026, PP448027 and PP448028, respectively) were 100% (594 out of 594 bp), 100% (864 out of 864 bp), 100% (299 out of 299 bp), 100% (732 out of 732 bp) and 100% (282 out of 282 bp) identical to C. gloeosporioides (GenBank accession nos. JX010152, JX010085, JX009818, JX009731 and JX009531, respectively). A Maximum Likelihood phylogenetic tree, constructed by combining all sequenced loci in MEGA7, showed that the isolates ZJ 2-1, ZJ 2-2 and ZJ 2-3 clustered within the C. gloeosporioides clade with 99% bootstrap support (Fig. S1). To fulfill Koch's postulates, five C. chinensis Bunge plants were tested for pathogenicity in the field with isolates ZJ 2-1, ZJ 2-2 and ZJ 2-3 at Huangshan University. Twelve leaves from each tree were wounded and inoculated with mycelial plugs (approximately 4 mm in diameter) and 10 µl of a spore suspension (1.0 × 106 conidia/ml) of C. gloeosporioides. Inoculation with sterile PDA plugs and pure water on leaves of each tree served as negative controls. Plastic bags were used to wrap the leaves, and sterile H2O was sprayed into the bags to maintain moisture conditions (Zhang et al.2020). The experiment was repeated two times, and within 5 days, all inoculated points displayed lesions similar to those observed in the field, whereas controls remained asymptomatic (Fig. S2). The same fungus was reisolated from these lesions with a frequency of 100%. Consequently, the pathogen responsible the disease in C. chinensis Bunge was identified as C. gloeosporioides. To the best of our knowledge, this is the first report of C. gloeosporioides causing leaf blight on C. chinensis Bunge in China. This study provides valuable insights for implementing targeted measures to control leaf blight on C. chinensis Bunge and lays a foundation for the prevention and treatment of the disease.

6.
Pestic Biochem Physiol ; 203: 106006, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084801

RESUMEN

Peach is one of the popular and economically important fruit crops in China. Peach cultivation is hampered due to attacks of anthracnose disease, causing significant economic losses. Colletotrichum fructicola and Colletotrichum siamense belong to the Colletotrichum gloeosporioides species complex and are considered major pathogens of peach anthracnose. Application of different groups of fungicides is a routine approach for controlling this disease. However, fungicide resistance is a significant drawback in managing peach anthracnose nowadays. In this study, 39 isolates of C. fructicola and 41 isolates of C. siamense were collected from different locations in various provinces in China. The sensitivity of C. fructicola and C. siamense to some commonly used fungicides, i.e., carbendazim, iprodione, fluopyram, and propiconazole, was determined. All the isolates of C. fructicola collected from Guangdong province showed high resistance to carbendazim, whereas isolates collected from Guizhou province were sensitive. In C. siamense, isolates collected from Hebei province showed moderate resistance, while those from Shandong province were sensitive to carbendazim. On the other hand, all the isolates of C. fructicola and C. siamense showed high resistance to the dicarboximide (DCF) fungicide iprodione and succinate dehydrogenase inhibitor (SDHI) fungicide fluopyram. However, they are all sensitive to the demethylation inhibitor (DMI) fungicide propiconazole. Positive cross-resistance was observed between carbendazim and benomyl as they are members of the same methyl benzimidazole carbamate (MBC) group. While no correlation of sensitivity was observed between different groups of fungicides. No significant differences were found in each fitness parameter between carbendazim-resistant and sensitive isolates in both species. Molecular characterization of the ß-tubulin 2 (TUB2) gene revealed that in C. fructicola, the E198A point mutation was the determinant for the high resistance to carbendazim, while the F200Y point mutation was linked with the moderate resistance to carbendazim in C. siamense. Based on the results of this study, DMI fungicides, e.g., propiconazole or prochloraz could be used to control peach anthracnose, especially at locations where the pathogens have already developed the resistance to carbendazim and other fungicides.


Asunto(s)
Carbamatos , Colletotrichum , Farmacorresistencia Fúngica , Fungicidas Industriales , Enfermedades de las Plantas , Prunus persica , Colletotrichum/efectos de los fármacos , Colletotrichum/genética , Fungicidas Industriales/farmacología , Prunus persica/microbiología , Enfermedades de las Plantas/microbiología , Carbamatos/farmacología , China , Bencimidazoles/farmacología , Hidantoínas/farmacología , Triazoles/farmacología , Aminoimidazol Carboxamida/análogos & derivados
7.
Nat Prod Res ; : 1-13, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082305

RESUMEN

Essential oils (EOs) have been investigated for their effectiveness against fungal fruit pathogens. The present review article summarises the EOs that inhibit Alternaria alternata and Colletotrichum gloeosporioides in the pre- and post-harvest stages of fruits. Thirty-nine scientific papers focusing on the extraction conditions and the antifungal activity of EOs were selected. The retrieved studies came mainly from China and Brazil. Hydrodistillation has been identified as the most used extractive method. The yields and chemical profiles were variable among the species. The in vitro studies were larger than the in vivo studies. The application of EOs reduced the incidence of fungal diseases in tomatoes (Lycopersicon esculentum), papaya (Carica papaya) and mango (Mangifera indica). EOs resulted as a potential ecological alternative for treating fungal diseases in fruits requiring further investigation.

8.
J Fungi (Basel) ; 10(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057390

RESUMEN

Colletotrichum gloeosporioides is the main pathogen that causes poplar anthracnose. This hemibiotrophic fungus, which can severely decrease the economic benefits and ecological functions of poplar trees, infects the host by forming an appressorium. Hox7 is an important regulatory factor that functions downstream of the Pmk1 MAPK signaling pathway. In this study, we investigated the effect of deleting CgHox7 on C. gloeosporioides. The conidia of the ΔCgHox7 deletion mutant germinated on a GelBond membrane to form non-melanized hyphal structures, but were unable to form appressoria. The deletion of CgHox7 weakened the ability of hyphae to penetrate a cellophane membrane and resulted in decreased virulence on poplar leaves. Furthermore, deleting CgHox7 affected the oxidative stress response. In the initial stage of appressorium formation, the accumulation of reactive oxygen species differed between the ΔCgHox7 deletion mutant and the wild-type control. Moreover, CgHox7 expression was necessary for maintaining cell wall integrity. Considered together, these results indicate that CgHox7 is a transcription factor with crucial regulatory effects on appressorium formation and the pathogenicity of C. gloeosporioides.

9.
BMC Plant Biol ; 24(1): 653, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987678

RESUMEN

BACKGROUND: Walnut anthracnose caused by Colletotrichum gloeosporioides seriously endangers the yield and quality of walnut, and has now become a catastrophic disease in the walnut industry. Therefore, understanding both pathogen invasion mechanisms and host response processes is crucial to defense against C. gloeosporioides infection. RESULTS: Here, we investigated the mechanisms of interaction between walnut fruits (anthracnose-resistant F26 fruit bracts and anthracnose-susceptible F423 fruit bracts) and C. gloeosporioides at three infection time points (24hpi, 48hpi, and 72hpi) using a high-resolution time series dual transcriptomic analysis, characterizing the arms race between walnut and C. gloeosporioides. A total of 20,780 and 6670 differentially expressed genes (DEGs) were identified in walnut and C. gloeosporioides against 24hpi, respectively. Generous DEGs in walnut exhibited opposite expression patterns between F26 and F423, which indicated that different resistant materials exhibited different transcriptional responses to C. gloeosporioides during the infection process. KEGG functional enrichment analysis indicated that F26 displayed a broader response to C. gloeosporioides than F423. Meanwhile, the functional analysis of the C. gloeosporioides transcriptome was conducted and found that PHI, SignalP, CAZy, TCDB genes, the Fungal Zn (2)-Cys (6) binuclear cluster domain (PF00172.19) and the Cytochrome P450 (PF00067.23) were largely prominent in F26 fruit. These results suggested that C. gloeosporioides secreted some type of effector proteins in walnut fruit and appeared a different behavior based on the developmental stage of the walnut. CONCLUSIONS: Our present results shed light on the arms race process by which C. gloeosporioides attacked host and walnut against pathogen infection, laying the foundation for the green prevention of walnut anthracnose.


Asunto(s)
Colletotrichum , Juglans , Enfermedades de las Plantas , Juglans/microbiología , Juglans/genética , Colletotrichum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , RNA-Seq , Frutas/microbiología , Frutas/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Resistencia a la Enfermedad/genética
10.
Plant Biotechnol J ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852059

RESUMEN

Apple is an important cash crop in China, and it is susceptible to fungal infections that have deleterious effects on its yield. Apple bitter rot caused by Colletorichum gloeosporioides is one of the most severe fungal diseases of apple. Salicylic acid (SA) is a key signalling molecule in the plant disease resistance signalling pathways. Lignin synthesis also plays a key role in conferring disease resistance. However, few studies have clarified the relationship between the SA disease resistance signalling pathway and the lignin disease resistance pathway in apple. MdMYB46 has previously been shown to promote lignin accumulation in apple and enhance salt and osmotic stress tolerance. Here, we investigated the relationship between MdMYB46 and biological stress; we found that MdMYB46 overexpression enhances the resistance of apple to C. gloeosporioides. We also identified MdARF1, a transcription factor upstream of MdMYB46, via yeast library screening and determined that MdARF1 was regulated by miR7125 through psRNATarget prediction. This regulatory relationship was confirmed through LUC and qRT-PCR experiments, demonstrating that miR7125 negatively regulates MdARF1. Analysis of the miR7125 promoter revealed that miR7125 responds to SA signals. The accumulation of SA level will result in the decrease of miR7125 expression level. In sum, the results of our study provide novel insights into the molecular mechanisms underlying the resistance of apple to C. gloeosporioides and reveal a new pathway that enhances lignin accumulation in apple in response to SA signals. These findings provide valuable information for future studies aimed at breeding apple for disease resistance.

11.
Int J Biol Macromol ; 274(Pt 1): 133216, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901513

RESUMEN

Secreted common fungal extracellular membrane (CFEM) domain proteins have been implicated in multiple biological functions in fungi. However, it is still largely unknown whether the ferric iron (Fe3+), as an important trace element, was involved with the biological function of CFEM proteins. In this study, a new CFEM protein CgCsa, with high expression levels at the early inoculation stage on peppers by Colletotrichum gloeosporioides was investigated. Deletion of the targeted gene CgCsa revealed multiple biological roles in hyphal growth restriction, highly reduced conidial yield, delayed conidial germination, abnormal appressorium with elongated bud tubes, and significantly reduced virulence of C. gloeosporioides. Moreover, in CgCsa mutants, the expression levels of four cell wall synthesis-related genes were downregulated, and cell membrane permeability and electrical conductivity were increased. Compared to the wild-type, the CgCsa mutants downregulated expressions of iron transport-related genes, in addition, its three-dimensional structure was capable binding with iron. Increase in the Fe3+ concentration in the culture medium partially recovered the functions of ΔCgCsa mutant. This is probably the first report to show the association between CgCsa and iron homeostasis in C. gloeosporioides. The results suggest an alternative pathway for controlling plant fungal diseases by deplete their trace elements.


Asunto(s)
Colletotrichum , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Homeostasis , Hierro , Colletotrichum/patogenicidad , Colletotrichum/genética , Colletotrichum/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hierro/metabolismo , Virulencia/genética , Esporas Fúngicas/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Hifa/crecimiento & desarrollo , Mutación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
12.
J Agric Food Chem ; 72(22): 12459-12468, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771934

RESUMEN

A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.


Asunto(s)
Carica , Colletotrichum , Eugenol , Fungicidas Industriales , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Triazoles , Colletotrichum/efectos de los fármacos , Eugenol/farmacología , Eugenol/química , Carica/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Relación Estructura-Actividad , Diseño de Fármacos , Proteínas Fúngicas/química , Estructura Molecular
13.
Gels ; 10(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38786231

RESUMEN

Food gels are viscoelastic substances used in various gelled products manufactured around the world. Polysaccharides are the most common food gelling agents. The aim of this work was the production and characterization of a gel produced in a blue corn flour fermentation process, where different proportions were used of blue corn (Zea mays L.) flour and Czapek Dox culture medium (90 mL of culture medium with 10 g of blue corn flour, 80 mL of culture medium with 20 g of blue corn flour, and 70 mL of culture medium with 30 g of blue corn flour) and were fermented for three different durations (20, 25, and 30 days) with the Colletotrichum gloeosporioides fungus. A characterization of the gel was carried out studying the rheological properties, proximal analysis, toxicological analysis, microscopic structure, and molecular characterization, in addition to a solubility test with three different organic solvents (ethanol, hexane, and ethyl acetate, in addition to water). The results obtained showed in the rheological analysis that the gel could have resistance to high temperatures and a reversible behavior. The gel is soluble in polar solvents (ethanol and water). The main chemical components of the gel are carbohydrates, especially polysaccharides, and it was confirmed by FT-IR spectroscopy that the gel may be composed of pectin.

14.
J Fungi (Basel) ; 10(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38786670

RESUMEN

The greater yam (Dioscorea alata), a widely cultivated and nutritious food crop, suffers from widespread yield reduction due to anthracnose caused by Colletotrichum gloeosporioides. Latent infection often occurs before anthracnose phenotypes can be detected, making early prevention difficult and causing significant harm to agricultural production. Through comparative genomic analysis of 60 genomes of 38 species from the Colletotrichum genus, this study identified 17 orthologous gene groups (orthogroups) that were shared by all investigated C. gloeosporioides strains but absent from all other Colletotrichum species. Four of the 17 C. gloeosporioides-specific orthogroups were used as molecular markers for PCR primer designation and C. gloeosporioides detection. All of them can specifically detect C. gloeosporioides out of microbes within and beyond the Colletotrichum genus with different sensitivities. To establish a rapid, portable, and operable anthracnose diagnostic method suitable for field use, specific recombinase polymerase amplification (RPA) primer probe combinations were designed, and a lateral flow (LF)-RPA detection kit for C. gloeosporioides was developed, with the sensitivity reaching the picogram (pg) level. In conclusion, this study identified C. gloeosporioides-specific molecular markers and developed an efficient method for C. gloeosporioides detection, which can be applied to the prevention and control of yam anthracnose as well as anthracnose caused by C. gloeosporioides in other crops. The strategy adopted by this study also serves as a reference for the identification of molecular markers and diagnosis of other plant pathogens.

15.
Plant Dis ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764344

RESUMEN

Wurfbainia villosa var. villosa is a traditional Chinese herbal medicine under the family Zingiberaceae, and its ripe fruits (called Fructus Amomi) are widely used clinically for the treatment of gastrointestinal disorders (Yang et al. 2023; Chen et al. 2023). In September 2023, plants of W. villosa var. villosa exhibited anthracnose-like symptoms on leaf with a disease incidence of 35% (n = 100 investigated plants) in an approximately 90 m2 field in Guangning, China (N23°42'51.70″, E112°26'35.75″). Light yellowish-green spots (~2 mm diameter) initially appeared on the infected leaves, gradually formed sub-circular or irregular spots, then fused and expanded, resulting in wilting of the leaves. To identify the causal agent, 10 symptomatic leaves were collected and transferred to the laboratory. The symptomatic leaf samples were surface sterilized in 0.5% NaClO for 2 min, and in 70% ethanol for 30 s, then washed three times with sterile water and air-dried on sterile filter paper. The leaf tissues were placed on potato dextrose agar (PDA) medium containing 100 µg mL-1 of ampicillin (Sigma-Aldrich, St. Louis, MO) and incubated for 7 days at 28°C in darkness. Nine isolates with similar colony morphology were isolated from the 10 plated leaves. Three representative isolates (GNAF03, GNAF06, GNAF09 with approximately 3.5 cm in diameter after 3 days of incubation) appeared gray to dark brown with dense aerial hyphae at the front and gray to black colonies on the reverse of the plates. Conidia were cylindrical and measured 21.2 to 29.3 µm long × 7.1 to 9.6 µm wide (n = 50). Appressoria were formed by the tips of germ tubes or hyphae and were brown, ellipsoid, thick-walled, and smooth-margined, measuring 10.2 to 12.3 µm long × 6.4 to 8.2 µm wide (n = 50). Morphologically, the fungal isolates resembled Colletotrichum sp. (Weir et al. 2012). For molecular analysis, genomic DNA was extracted from fresh mycelia of the three isolates, and the primers ACT-512F/ACT-783R, CL1/CL2A, GDF/GDR, and ITS1/ITS4 were used to amplify partial regions of rDNA-ITS, actin (ACT), calmodulin (CAL), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions, respectively (Weir et al. 2012). The resulting sequences with more than 99% nucleotide identity to C. gloeosporioides were submitted to GenBank (accession numbers PP552725, PP552726, and OR827444 for ACT; PP552727, PP552728, and OR827443 for CAL; PP552729, PP552730, and OR827445 for GAPDH; PP549996, PP549999, and OR841394 for ITS). A phylogenetic tree was generated by the maximum likelihood method using the concatenated sequences of ACT, CAL, GADPH, and ITS by Polysuite software (Damm et al. 2020). Based on morphological and molecular analysis, the three isolates were characterized as C. gloeosporioides. The pathogenicity of the GNAF09 isolate was assessed on W. villosa var. villosa seedling leaves inoculated by spraying with 40 µL of conidial suspension at 106 conidia mL-1 or wounded with a sterile toothpick then inoculated with mycelial agar plugs (5 mm diameter). Control leaves were inoculated with 40 µL of sterile distilled water or agar plugs without mycelia. The inoculated plants were placed in a humid chamber at 28°C with 80% humidity and a 12 h light-dark photoperiod. Symptoms similar to those seen on naturally infected leaves were observed on all inoculated leaves after 7 days inoculation. Re-isolation was performed from 80% of the inoculated leaves and isolates were confirmed as C. gloeosporioides morphologically, confirming Koch's postulates, and by sequencing the ACT, CAL, GADPH, and ITS regions. The control groups remained asymptomatic. In previous studies, C. gloeosporioides has also caused anthracnose on Chinese medicinal plants, including Baishao (Radix paeoniae alba) (Zhang et al. 2017) and Rubia cordifolia L. (Tang et al. 2020). To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on W. villosa var. villosa in China. The results of our report serve as valuable references for further research on this disease.

16.
Sci Total Environ ; 934: 173297, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761953

RESUMEN

Co-incubation of plant growth promoting rhizobacteria (PGPRs) have been proposed as a potential alternative to pesticides for controlling fungal pathogens in crops, but their synergism mechanisms are not yet fully understood. In this study, combined use of Bacillus subtilis SL44 and Enterobacter hormaechei Wu15 could decrease the density of Colletotrichum gloeosporioides and Rhizoctonia solani and enhance the growth of beneficial bacteria on the mycelial surface, thereby mitigating disease severity. Meanwhile, PGPR application led to a reorganization of the rhizosphere microbial community through modulating its metabolites, such as extracellular polymeric substances and chitinase. These metabolites demonstrated positive effects on attracting and enhancing conventional periphery bacteria, inhibiting fungal pathogens and promoting soil health effectively. The improvement in the microbial community structure altered the trophic mode of soil fungal communities, effectively decreasing the proportion of saprotrophic soil and reducing fungal plant diseases. Certain combinations of PGPR have the potential to serve as precise instruments for managing plant pathogens.


Asunto(s)
Bacillus subtilis , Enterobacter , Enfermedades de las Plantas , Microbiología del Suelo , Enterobacter/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rizosfera , Rhizoctonia/fisiología , Colletotrichum/fisiología
17.
Phytopathology ; 114(8): 1832-1842, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38748933

RESUMEN

Colletotrichum gloeosporioides is the causal agent of poplar anthracnose, which induces major economic losses and adversely affects the ecosystem services of poplar forests. The appressorium serves as a penetration structure for many pathogenic fungi, including C. gloeosporioides. The production of mucilage and the formation of penetration pegs are critically important for the appressorium-mediated penetration of host tissues. We previously found that CgPmk1 is a key protein involved in appressorium formation, penetration, and pathogenicity. Although CgSte12, which is a transcription factor that functions downstream of CgPmk1, regulates the formation of penetration pegs, its role in C. gloeosporioides appressorium development and pathogenicity has not been elucidated. Here, we developed C. gloeosporioides CgSTE12 mutants and characterized the molecular and cellular functions of CgSTE12. The results showed that mycelial growth and morphology were not affected in the CgSTE12 knockout mutants, which produced normal melanized appressoria. However, these mutants had less mucilage secreted around the appressoria, impaired appressorial cone formation, and the inability to form penetration pores and pegs, which ultimately led to a significant loss of pathogenicity. Our comparative transcriptome analysis revealed that CgSte12 controls the expression of genes involved in appressorium development and function, including genes encoding cutinases, NADPH oxidase, spermine biosynthesis-related proteins, ceramide biosynthesis-related proteins, fatty acid metabolism-related proteins, and glycerophospholipid metabolism-related proteins. Overall, our findings indicate that CgSte12 is a critical regulator of appressorium development and affects C. gloeosporioides pathogenicity by modulating the structural integrity of appressoria.


Asunto(s)
Colletotrichum , Proteínas Fúngicas , Enfermedades de las Plantas , Populus , Factores de Transcripción , Colletotrichum/patogenicidad , Colletotrichum/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Populus/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia , Regulación Fúngica de la Expresión Génica , Mutación
18.
Plants (Basel) ; 13(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732488

RESUMEN

Dioscorea alata, commonly known as "greater yam", is a vital crop in tropical and subtropical regions of the world, yet it faces significant threats from anthracnose disease, mainly caused by Colletotrichum gloeosporioides. However, exploring disease resistance genes in this species has been challenging due to the difficulty of genetic mapping resulting from the loss of the flowering trait in many varieties. The receptor-like kinase (RLK) gene family represents essential immune receptors in plants. In this study, genomic analysis revealed 467 RLK genes in D. alata. The identified RLKs were distributed unevenly across chromosomes, likely due to tandem duplication events. However, a considerable number of ancient whole-genome or segmental duplications dating back over 100 million years contributed to the diversity of RLK genes. Phylogenetic analysis unveiled at least 356 ancient RLK lineages in the common ancestor of Dioscoreaceae, which differentially inherited and expanded to form the current RLK profiles of D. alata and its relatives. The analysis of cis-regulatory elements indicated the involvement of RLK genes in diverse stress responses. Transcriptome analysis identified RLKs that were up-regulated in response to C. gloeosporioides infection, suggesting their potential role in resisting anthracnose disease. These findings provide novel insights into the evolution of RLK genes in D. alata and their potential contribution to disease resistance.

19.
Plant Dis ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587792

RESUMEN

Euphorbia lathyris L. is a biennial herb in the Euphorbiaceae that has been used as a medicinal plant. It is distributed or cultivated worldwide, and the seeds of E. lathyris are the main source of ingenol, which is the precursor of Picato, the first medicine approved by USFDA for the treatment of solar keratosis (Abramovits et al. 2013). However, the production of E. lathyris can be severely hampered by the occurrence of plant diseases. Between 2020-2022 (specifically in October-November of each year), anthracnose-like symptoms were observed on E. lathyris in fields (E 118°49'50″, N 32°3'33″) in Nanjing, Jiangsu Province, China. The incidence of E. lathyris with disease symptoms was between 25%-30% (n = 100). The lesions on the leaves were evident initially as dark brown spots, which expanded into larger necrotic spots, finally resulting in leaves withering and dropping off. In severe cases, stem wilting was also observed. To determine the causal agent, we collected diseased leaf samples (n = 20) from different E. lathyris plants in the field (~ 1800 m2). After cleaning, the junctions of the diseased and healthy parts were excised and sterilized in 75% ethanol for 20-25 seconds, and rinsed with sterile water. After that, they were transferred onto potato sucrose agar (PSA) plates and placed at 25℃ for 3-4 days, until fungal growth was evident. The fungus was purified by recovering single conidia and growing them on PSA (Hu et al. 2015). A consistent fungal colony, based on morphological characteristics, was recovered from 17 samples. The colony color was initially white, green in the middle, and gradually changed into gray green as the colony matured. Conidia were transparent and cylindrical (22-28 µm × 7-9 µm, n = 50). Five loci informative (ITS, TUB, ACT, GAPDH, and CHS-1) (Weir et al. 2012) for Colletotrichum spp. identification were sequenced from two isolates ELC-1 and ELC-2 obtained from different plant individuals. Compared with a reference isolate (Colletotrichum gloeosporioides ZH3), the GAPDH, CHS-1, and TUB2 sequences of ELC-1 and ELC-2 showed 95% (263 bp out of 275 bp), 98% (295 bp out of 299 bp), and 99% (711 bp out of 712 bp and 717 bp out of 719 bp) similarity, respectively. The ITS sequence identities were 100% (577 bp out of 577 bp) and 99% (594 bp out of 597 bp), while the ACT sequence identities were 100% (281 bp out of 281 bp) and 98% (279 bp out of 284 bp). All sequences have been deposited in Genbank database (OR865865-OR865866 and OR873625-OR873632). After performing phylogenetic analysis with Mega 11, the pathogen was confirmed as C. gloeosporioides. To fulfil Koch's postulates, we sprayed six-week-old healthy plants with a conidia suspension of C. gloeosporioides (106 spores/mL) or sterile water (serve as control). The inoculated plants were placed at 25℃, 100% relative humidity, and 12-h photoperiod (Zhang et al. 2021). Six plants were inoculated for each treatment, and the experiment was repeated three times. After 6-8 days, the plants inoculated with C. gloeosporioides showed similar symptoms to those observed on diseased plants in the field, while the control plants remained healthy and free of disease. The pathogens were then re-isolated and identified as C. gloeosporioides. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on E. lathyris. Anthracnose may cause significant yield losses in E. lathyris production, and our results will provide experimental and theoretical basis for the management of the disease.

20.
Rev Argent Microbiol ; 2024 Apr 12.
Artículo en Español | MEDLINE | ID: mdl-38614909

RESUMEN

Phytopathogenic fungi Alternaria alternata and Colletotrichum gloeosporioides cause diseases in plant tissues as well as significant postharvest losses. The use of chemical fungicides for their control has negative effects on health and the environment. Secondary metabolites from halophilic bacteria are a promising alternative for new antifungal compounds. In the present study, halophilic bacteria were isolated and characterized from two sites with saline soils called branquizales in Campeche, Mexico. A total of 64 bacteria were isolated. Agrobacterium, Bacillus, Inquilinus, Gracilibacillus, Metabacillus, Neobacillus, Paenibacillus, Priestia, Staphylococcus, Streptomyces and Virgibacillus were among the identified genera. The antifungal potential of the culture supernatant (CS) of 39 halophilic bacteria was investigated against C. gloeosporioides and A. alternata. The bacteria showing the greatest inhibition of mycelial growth corresponded to Bacillus subtilis CPO 4292, Metabacillus sp. CPO 4266, Bacillus sp. CPO 4295 and Bacillus sp. CPO 4279. The CS of Bacillus sp. CPO 4279 exhibited the highest activity and its ethyl acetate extract (AcOEt) inhibited the germination of C. gloeosporioides, with IC50 values of 8,630µg/ml and IC90 of 10,720µg/ml. The organic partition of the AcOEt extract led to three fractions, with acetonitrile (FAcB9) showing the highest antifungal activity, with values exceeding 66%. Halophilic bacteria from 'blanquizales' soils of the genus Bacillus sp. produce metabolites with antifungal properties that inhibit the phytopathogenic fungus C. gloeosporioides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA