Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.567
Filtrar
1.
EBioMedicine ; 108: 105325, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232464

RESUMEN

BACKGROUND: Presence of nerves in tumours, by axonogenesis and neurogenesis, is gaining increased attention for its impact on cancer initiation and development, and the new field of cancer neuroscience is emerging. A recent study in prostate cancer suggested that the tumour microenvironment may influence cancer progression by recruitment of Doublecortin (DCX)-expressing neural progenitor cells (NPCs). However, the presence of such cells in human breast tumours has not been comprehensively explored. METHODS: Here, we investigate the presence of DCX-expressing cells in breast cancer stromal tissue from patients using Imaging Mass Cytometry. Single-cell analysis of 372,468 cells across histopathological images of 107 breast cancers enabled spatial resolution of neural elements in the stromal compartment in correlation with clinicopathological features of these tumours. In parallel, we established a 3D in vitro model mimicking breast cancer neural progenitor-innervation and examined the two cell types as they co-evolved in co-culture by using mass spectrometry-based global proteomics. FINDINGS: Stromal presence of DCX + cells is associated with tumours of higher histological grade, a basal-like phenotype, and shorter patient survival in tumour tissue from patients with breast cancer. Global proteomics analysis revealed significant changes in the proteomic landscape of both breast cancer cells and neural progenitors in co-culture. INTERPRETATION: These results support that neural involvement plays an active role in breast cancer and warrants further studies on the relevance of nerve elements for tumour progression. FUNDING: This work was supported by the Research Council of Norway through its Centre of Excellence funding scheme, project number 223250 (to L.A.A), the Norwegian Cancer Society (to L.A.A. and H.V.), the Regional Health Trust Western Norway (Helse Vest) (to L.A.A.), the Meltzer Research Fund (to H.V.) and the National Institutes of Health (NIH)/NIGMS grant R01 GM132129 (to J.A.P.).

2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273316

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is almost entirely resistant to conventional chemotherapy and radiation therapy. A significant factor in this resistance appears to be the dense desmoplastic stroma, which contains various cancer-associated fibroblast (CAF) populations. However, our understanding of the communication between tumor cells and CAFs that contributes to this aggressive malignancy is still developing. Recently, we used an advanced three-dimensional heterospecies, heterospheroid co-culture model to investigate the signaling between human pancreatic tumor Panc1 cells and mouse pancreatic stellate cells (mPSCs) through global expression profiling. Upon discovering that CCN1 was significantly upregulated in Panc1 cells during co-culture, we decided to explore the role of CCN1 using CRISPR-Cas9 knockout technology. Panc1 cells lacking CCN1 showed reduced differentiation and decreased sensitivity to gemcitabine, primarily due to lower expression of genes involved in gemcitabine transport and metabolism. Additionally, we observed that stimulation with TGF-ß1 and lysophosphatidic acid increased CCN1 expression in Panc1 cells and induced a shift in mPSCs towards a more myofibroblastic CAF-like phenotype.


Asunto(s)
Técnicas de Cocultivo , Proteína 61 Rica en Cisteína , Desoxicitidina , Gemcitabina , Neoplasias Pancreáticas , Células Estrelladas Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Humanos , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/efectos de los fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Ratones , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
3.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39227152

RESUMEN

Astrocytes are essential for the formation and maintenance of neural networks. However, a major technical challenge for investigating astrocyte function and disease-related pathophysiology has been the limited ability to obtain functional human astrocytes. Despite recent advances in human pluripotent stem cell (hPSC) techniques, primary rodent astrocytes remain the gold standard in coculture with human neurons. We demonstrate that a combination of leukemia inhibitory factor (LIF) and bone morphogenetic protein-4 (BMP4) directs hPSC-derived neural precursor cells to a highly pure population of astroglia in 28 d. Using single-cell RNA sequencing, we confirm the astroglial identity of these cells and highlight profound transcriptional adaptations in cocultured hPSC-derived astrocytes and neurons, consistent with their further maturation. In coculture with human neurons, multielectrode array recordings revealed robust network activity of human neurons in a coculture with hPSC-derived or rat astrocytes [3.63 ± 0.44 min-1 (hPSC-derived), 2.86 ± 0.64 min-1 (rat); p = 0.19]. In comparison, we found increased spike frequency within network bursts of human neurons cocultured with hPSC-derived astrocytes [56.31 ± 8.56 Hz (hPSC-derived), 24.77 ± 4.04 Hz (rat); p < 0.01], and whole-cell patch-clamp recordings revealed an increase of postsynaptic currents [2.76 ± 0.39 Hz (hPSC-derived), 1.07 ± 0.14 Hz (rat); p < 0.001], consistent with a corresponding increase in synapse density [14.90 ± 1.27/100 µm2 (hPSC-derived), 8.39 ± 0.63/100 µm2 (rat); p < 0.001]. Taken together, we show that hPSC-derived astrocytes compare favorably with rat astrocytes in supporting human neural network activity and maturation, providing a fully human platform for investigating astrocyte function and neuronal-glial interactions.


Asunto(s)
Astrocitos , Técnicas de Cocultivo , Neuronas , Células Madre Pluripotentes , Astrocitos/fisiología , Humanos , Animales , Células Madre Pluripotentes/fisiología , Ratas , Neuronas/fisiología , Células Cultivadas , Células-Madre Neurales/fisiología , Diferenciación Celular/fisiología
4.
SLAS Discov ; 29(7): 100182, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245180

RESUMEN

The use of organoid models in biomedical research has grown substantially since their inception. As they gain popularity among scientists seeking more complex and biologically relevant systems, there is a direct need to expand and clarify potential uses of such systems in diverse experimental contexts. Herein we outline a high-content screening (HCS) platform that allows researchers to screen drugs or other compounds against three-dimensional (3D) cell culture systems in a multi-well format (384-well). Furthermore, we compare the quality of robotic liquid handling with manual pipetting and characterize and contrast the phenotypic effects detected by confocal imaging and biochemical assays in response to drug treatment. We show that robotic liquid handling is more consistent and amendable to high throughput experimental designs when compared to manual pipetting due to improved precision and automated randomization capabilities. We also show that image-based techniques are more sensitive to detecting phenotypic changes within organoid cultures than traditional biochemical assays that evaluate cell viability, supporting their integration into organoid screening workflows. Finally, we highlight the enhanced capabilities of confocal imaging in this organoid screening platform as they relate to discerning organoid drug responses in single-well co-cultures of organoids derived from primary human biopsies and patient-derived xenograft (PDX) models. Altogether, this platform enables automated, imaging-based HCS of 3D cellular models in a non-destructive manner, opening the path to complementary analysis through integrated downstream methods.

5.
Nanomaterials (Basel) ; 14(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39269097

RESUMEN

Pollution by microplastics and nanoplastics (MNPs) raises concerns, not only regarding their environmental effects, but also their potential impact on human health by internalization via the small intestine. However, the detailed pathways of MNP internalization and their toxicities to the human intestine have not sufficiently been understood, thus, further investigations are required. This work aimed to understand the behavior of MNPs, using in vitro human intestine models, tri-culture models composed of enterocyte Caco-2 cells, goblet-like HT29-MTX-E12 cells, and microfold cells (M cells) induced by the lymphoblast cell line Raji B. Three sizes (50, 100, and 500 nm) of polystyrene (PS) particles were exposed as MNPs on the culture model, and size-dependent translocation of the MNPs and the contributions of each cell were clarified, emphasizing the significance of the tri-culture model. In addition, potential concerns of MNPs were suggested when they invaded the circulatory system of the human body.

6.
Appl Microbiol Biotechnol ; 108(1): 462, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264460

RESUMEN

Bioinformatic analysis revealed that the genomes of ubiquitous Penicillium spp. might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained uncharacterized. In this study, a detailed investigation of co-culture fermentation including the basidiomycete Armillaria mellea CPCC 400891 and the P. brasilianum CGMCC 3.4402 enabled the isolation of five new compounds including two bisabolene-type sesquiterpenes (arpenibisabolanes A and B), two carotane-type sesquiterpenes (arpenicarotanes A and B), and one polyketide (arpenichorismite A) along with seven known compounds. The assignments of their structures were deduced by the extensive analyses of detailed spectroscopic data, electronic circular dichroism spectra, together with delimitation of the biogenesis. Most new compounds were not detected in monocultures under the same fermentation conditions. Arpenibisabolane A represents the first example of a 6/5-fused bicyclic bisabolene. The bioassay of these five new compounds exhibited no cytotoxic activities in vitro against three human cancer cell lines (A549, MCF-7, and HepG2). Moreover, sequence alignments and bioinformatic analysis to other metabolic pathways, two BGCs including Pb-bis and Pb-car, responsible for generating sesquiterpenoids from co-culture were identified, respectively. Furthermore, based on the chemical structures and deduced gene functions of the two clusters, a hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed. These results demonstrated that the co-culture approach would facilitate bioprospecting for new metabolites even from the well-studied microbes. Our findings would provide opportunities for further understanding of the biosynthesis of intriguing sesquiterpenoids via metabolic engineering strategies. KEY POINTS: • Penicillium and Armillaria co-culture facilitates the production of diverse secondary metabolites • Arpenibisabolane A represents the first example of 6/5-fused bicyclic bisabolenes • A hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed.


Asunto(s)
Armillaria , Técnicas de Cocultivo , Fermentación , Penicillium , Metabolismo Secundario , Sesquiterpenos , Armillaria/metabolismo , Armillaria/genética , Penicillium/metabolismo , Penicillium/genética , Penicillium/química , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Humanos , Familia de Multigenes , Línea Celular Tumoral , Vías Biosintéticas/genética , Policétidos/metabolismo , Policétidos/química , Policétidos/aislamiento & purificación , Células Hep G2
7.
Curr Res Microb Sci ; 7: 100271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39291138

RESUMEN

Long seen as non-valorisable waste, agricultural co-products are increasingly used in biorefinery processes. Co-culture appears as new trend for to improve the degradation of lignocellulose and improve the production of bioproducts. The goal of the study was to setup inter-domain co-cultures with high capabilities of lignocellulose degradation using a pluridisciplinary approach combining bioinformatics, enzymology, transcriptomics. Different individual lignocellulolytic strains: Trichoderma reesei QM6a and three bacteria (Streptomyces coelicolor A3(2), Rhizobium sp.XylPr11 and Sphingobacterium prati AraPr2 affiliated from different phyla) were used in that study . Synergic activities have been observed and quantified in co-culture conditions, particularly for xylanases and peroxidases activities. The enzymatic activities for the co-cultures in the most interesting co-culture (T. reesei QM6a/S. coelicolor A3(2)) reached more up to 2 IU/mL and 430 IU/mL respectively for the xylanase and peroxidase. Furthermore, ATR-FTIR analysis showed a real impact of co-culture condition on the substrate compared to the monoculture specially for hemicellulose degradation. Transcriptomics of S. coelicolor A3(2) either in mono or co-culture showed a relative similar pattern profile whatever the condition analysed with a specific overexpression of certain CAZyme genes involved in glycolysis due to the hydrolytic role played by the fungal partner. This work provided the proof of concept for technological feasibility, pertinence and usefulness of interdomain co-culture.

8.
Vet Res ; 55(1): 102, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152462

RESUMEN

In Chile, Piscirickettsia salmonis contains two genetically isolated genogroups, LF-89 and EM-90. However, the impact of a potential co-infection with these two variants on Salmonid Rickettsial Septicemia (SRS) in Atlantic salmon (Salmo salar) remains largely unexplored. In our study, we evaluated the effect of P. salmonis LF-89-like and EM-90-like co-infection on post-smolt Atlantic salmon after an intraperitoneal challenge to compare changes in disease dynamics and host immune response. Co-infected fish had a significantly lower survival rate (24.1%) at 21 days post-challenge (dpc), compared with EM-90-like single-infected fish (40.3%). In contrast, all the LF-89-like single-infected fish survived. In addition, co-infected fish presented a higher presence of clinical lesions than any of the single-infected fish. The gene expression of salmon immune-related biomarkers evaluated in the head kidney, spleen, and liver showed that the EM-90-like isolate and the co-infection induced the up-regulation of cytokines (e.g., il-1ß, ifnγ, il8, il10), antimicrobial peptides (hepdicin) and pattern recognition receptors (PRRs), such as TLR5s. Furthermore, in serum samples from EM-90-like and co-infected fish, an increase in the total IgM level was observed. Interestingly, specific IgM against P. salmonis showed greater detection of EM-90-like antigens in LF-89-like infected fish serum (cross-reaction). These data provide evidence that P. salmonis LF-89-like and EM-90-like interactions can modulate SRS disease dynamics in Atlantic salmon, causing a synergistic effect that increases the severity of the disease and the mortality rate of the fish. Overall, this study contributes to achieving a better understanding of P. salmonis population dynamics.


Asunto(s)
Coinfección , Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Piscirickettsia/fisiología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología , Coinfección/veterinaria , Coinfección/microbiología , Coinfección/inmunología , Chile , Sepsis/veterinaria , Sepsis/microbiología , Sepsis/inmunología
9.
Front Immunol ; 15: 1373464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185406

RESUMEN

Introduction: In systemic sclerosis (SSc), B-cells are activated and present in the skin and lung of patients where they can interact with fibroblasts. The precise impact and mechanisms of the interaction of B-cells and fibroblasts at the tissular level are poorly studied. Objective: We investigated the impact and mechanisms of B-cell/fibroblast interactions in cocultures between B-cells from patients with SSc and 3-dimensional reconstituted healthy skin model including fibroblasts, keratinocytes and extracellular matrix. Methods: The quantification and description of the B-cell infiltration in 3D cocultures were performed using cells imagery strategy and cytometry. The effect of coculture on the transcriptome of B-cells and fibroblasts was studied with bulk and single-cell RNA sequencing approaches. The mechanisms of this interaction were studied by blocking key cytokines like IL-6 and TNF. Results: We showed a significant infiltration of B-cells in the 3D healthy skin model. The amount but not the depth of infiltration was higher with B-cells from SSc patients and with activated B-cells. B-cell infiltrates were mainly composed of naïve and memory cells, whose frequencies differed depending on B-cells origin and activation state: infiltrated B-cells from patients with SSc showed an activated profile and an overexpression of immunoglobulin genes compared to circulating B-cells before infiltration. Our study has shown for the first time that activated B-cells modified the transcriptomic profile of both healthy and SSc fibroblasts, toward a pro-inflammatory (TNF and IL-17 signaling) and interferon profile, with a key role of the TNF pathway. Conclusion: B-cells and 3D skin cocultures allowed the modelization of B-cells infiltration in tissues observed in SSc, uncovering an influence of the underlying disease and the activation state of B-cells. We showed a pro-inflammatory effect on skin fibroblasts and pro-activation effect on infiltrating B-cells during coculture. This reinforces the role of B-cells in SSc and provide potential targets for future therapeutic approach in this disease.


Asunto(s)
Linfocitos B , Técnicas de Cocultivo , Fibroblastos , Esclerodermia Sistémica , Piel , Humanos , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/metabolismo , Fibroblastos/inmunología , Fibroblastos/metabolismo , Piel/inmunología , Piel/patología , Piel/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Femenino , Comunicación Celular/inmunología , Activación de Linfocitos/inmunología , Persona de Mediana Edad , Masculino , Células Cultivadas , Transcriptoma , Adulto , Queratinocitos/inmunología , Queratinocitos/metabolismo , Citocinas/metabolismo
10.
mBio ; : e0187124, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189743

RESUMEN

Many microbial biosynthetic gene clusters (BGCs) are inactive under standard laboratory conditions, making characterization of their products difficult. Silent BGCs are likely activated by specific cues in their natural environment, such as the presence of competitors. Growth conditions such as coculture with other microbes, which more closely mimic natural environments, are practical strategies for inducing silent BGCs. Here, we utilize coculture to activate BGCs in nine actinobacteria strains. We observed increased production of the ferrous siderophores siderochelin A and B during coculture of Amycolatopsis strain WAC04611 and Tsukamurella strain WAC06889b. Furthermore, we identified the siderochelin BGC in WAC04611 and discovered that the GntR-family transcription factor sidR3 represses siderochelin production. Deletion of the predicted aminotransferase sidA abolished production of the carboxamides siderochelin A/B and led to the accumulation of the carboxylate siderochelin D. Finally, we deleted the predicted hydroxylase sidB and established that it is essential for siderochelin production. Our findings show that microbial coculture can successfully activate silent BGCs and lead to the discovery and characterization of unknown BGCs for molecules like siderochelin.IMPORTANCESiderophores are vital iron-acquisition elements required by microbes for survival in a variety of environments. Furthermore, many siderophores are essential for the virulence of various human pathogens, making them a possible target for antibacterials. The significance of our work is in the identification and characterization of the previously unknown BGC for the siderophore siderochelin. Our work adds to the growing knowledge of siderophore biosynthesis, which may aid in the future development of siderophore-targeting pharmaceuticals and inform on the ecological roles of these compounds. Furthermore, our work demonstrates that combining microbial coculture with metabolomics is a valuable strategy for identifying upregulated compounds and their BGCs.

11.
J Biomed Sci ; 31(1): 84, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180048

RESUMEN

BACKGROUND: Identification of lung cancer subtypes is critical for successful treatment in patients, especially those in advanced stages. Many advanced and personal treatments require knowledge of specific mutations, as well as up- and down-regulations of genes, for effective targeting of the cancer cells. While many studies focus on individual cell structures and delve deeper into gene sequencing, the present study proposes a machine learning method for lung cancer classification based on low-magnification cancer outgrowth patterns in a 2D co-culture environment. METHODS: Using a magnetic well plate holder, circular pattern lung cancer cell clusters were generated among fibroblasts, and daily images were captured to monitor cancer outgrowth over a 9-day period. These outgrowth images were then augmented and used to train a convolutional neural network (CNN) model based on the lightweight TinyVGG architecture. The model was trained with pairs of classes representing three subtypes of NSCLC: A549 (adenocarcinoma), H520 (squamous cell carcinoma), and H460 (large cell carcinoma). The objective was to assess whether this lightweight machine learning model could accurately classify the three lung cancer cell lines at different stages of cancer outgrowth. Additionally, cancer outgrowth images of two patient-derived lung cancer cells, one with the KRAS oncogene and the other with the EGFR oncogene, were captured and classified using the CNN model. This demonstration aimed to investigate the translational potential of machine learning-enabled lung cancer classification. RESULTS: The lightweight CNN model achieved over 93% classification accuracy at 1 day of outgrowth among A549, H460, and H520, and reached 100% classification accuracy at 7 days of outgrowth. Additionally, the model achieved 100% classification accuracy at 4 days for patient-derived lung cancer cells. Although these cells are classified as Adenocarcinoma, their outgrowth patterns vary depending on their oncogene expressions (KRAS or EGFR). CONCLUSIONS: These results demonstrate that the lightweight CNN architecture, operating locally on a laptop without network or cloud connectivity, can effectively create a machine learning-enabled model capable of accurately classifying lung cancer cell subtypes, including those derived from patients, based upon their outgrowth patterns in the presence of surrounding fibroblasts. This advancement underscores the potential of machine learning to enhance early lung cancer subtyping, offering promising avenues for improving treatment outcomes in advanced stage-patients.


Asunto(s)
Técnicas de Cocultivo , Fibroblastos , Neoplasias Pulmonares , Aprendizaje Automático , Redes Neurales de la Computación , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Línea Celular Tumoral , Técnicas de Cocultivo/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología
12.
J Fungi (Basel) ; 10(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39194877

RESUMEN

This study aimed to investigate the efficiency of the secondary metabolites (SMs) produced by a co-culture of Trichoderma harzianum TW21990 and Burkholderia vietnamiensis B418 in the control of Colletotrichum siamense CM9. A fermentation filtrate of B418 + TW21990 co-culture (BT21) produced a notable increase in the inhibition rate of CM9 compared to those of TW21990 and B418 monocultures, which reached 91.40% and 80.46% on PDA plates and strawberry leaves, respectively. The BT21 fermentation broth exhibited high control efficiency on strawberry root rot of 68.95% in a pot experiment, which was higher than that in the monocultures and fluazinam treatment. In addition, BT21 treatment promoted strawberry root development, improved antioxidative enzyme activities in the leaves and roots, and enhanced the total chlorophyll content of the strawberry leaves. UHPLC-MS/MS analysis of fermentation filtrates was performed to elucidate SM variations, revealing 478 and 795 metabolites in BT21 co-culture in positive and negative ion modes, respectively. The metabolomic profiles suggested abundant SMs with antagonistic capabilities and growth-promoting effects: 3-(propan-2-yl)-octahydropyrrolo [1,2-a]pyrazine-1,4-dione (cyclo(L-Pro-L-Val)), 3-[(4-hydroxyphenyl)methyl]-octahydropyrrolo[1,2-a]pyrazine-1,4-dione (cyclo(L-Pro-L-Tyr)), 3-indoleacetic acid (IAA), 2-hydroxycinnamic acid, 4-aminobutyric acid (GABA), bafilomycin B1, and DL-indole-3-lactic acid (ILA) were significantly enhanced in the co-culture. Overall, this study demonstrates that a co-culture strategy is efficient for inducing bioactive SMs in T. harzianum and B. vietnamiensis, which could be exploited as a novel approach for developing biocontrol consortia.

13.
Mar Drugs ; 22(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39195448

RESUMEN

Co-cultivation is a powerful emerging tool for awakening biosynthetic gene clusters (BGCs) that remain transcriptionally silent under artificial culture conditions. It has recently been used increasingly extensively to study natural interactions and discover new bioactive metabolites. As a part of our project aiming at the discovery of structurally novel and biologically active natural products from mangrove endophytic fungi, an established co-culture of a strain of Phomopsis asparagi DHS-48 with another Phomopsis genus fungus DHS-11, both endophytes in mangrove Rhizophora mangle, proved to be very efficient to induce the production of new metabolites as well as to increase the yields of respective target metabolites. A detailed chemical investigation of the minor metabolites produced by the co-culture of these two titled fungal strains led to the isolation of six alkaloids (1-6), two sterols (7, 8), and six polyketides (9-14). In addition, all the compounds except 8 and 10, as well as three new metabolites phomopyrazine (1), phomosterol C (7), and phomopyrone E (9), were not present in discrete fungal cultures and only detected in the co-cultures. The structures were elucidated on the basis of spectroscopic analysis, and the absolute configurations were assumed by electronic circular dichroism (ECD) calculations. Subsequently, the cytotoxic, immunosuppressive, and acetylcholinesterase inhibitory properties of all the isolated metabolites were determined in vitro. Compound 8 exhibited moderate inhibitory activity against ConA-induced T and LPS-induced B murine splenic lymphocytes, with IC50 values of 35.75 ± 1.09 and 47.65 ± 1.21 µM, respectively.


Asunto(s)
Técnicas de Cocultivo , Endófitos , Phomopsis , Rhizophoraceae , Animales , Ratones , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/aislamiento & purificación , Endófitos/metabolismo , Phomopsis/metabolismo , Policétidos/metabolismo , Policétidos/farmacología , Policétidos/aislamiento & purificación , Policétidos/química , Rhizophoraceae/microbiología , Metabolismo Secundario
14.
Toxics ; 12(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39195709

RESUMEN

The strong appeal to reduce animal testing calls for the development and validation of in vitro, in chemico and in silico models that would replace the need for in vivo testing and ex vivo materials. A category that requires such new approach methods is the assessment of immunosuppression that can be induced by chemicals including environmental pollutants. To assess the immunosuppressive action on monocytes and lymphocytes, we mimicked the whole-blood cytokine-release assay by preparing an in vitro coculture of THP-1 and Jurkat cell lines. We optimised its activation and investigated the effects of known immunosuppressive drugs with different mechanisms of action on the release of proinflammatory cytokines. Decreased secretion of IL-8 was achieved by several immunosuppressive mechanisms and was therefore selected as an appropriate marker of immunosuppression. A set of environmentally occurring bisphenols, BPA, BPAP, BPP, BPZ, BPE, TCBPA and BPS-MAE, were then applied to the model and BPP and BPZ were found to act as potent immunosuppressants at micromolar concentrations.

15.
Toxins (Basel) ; 16(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39195754

RESUMEN

Pineapple Fruitlet Core Rot (FCR) is a fungal disease characterized by a multi-pathogen pathosystem. Recently, Fusarium proliferatum, Fusarium oxysporum, and Talaromyces stollii joined the set of FCR pathogens until then exclusively attributed to Fusarium ananatum. The particularity of FCR relies on the presence of healthy and diseased fruitlets within the same infructescence. The mycobiomes associated with these two types of tissues suggested that disease occurrence might be triggered by or linked to an ecological chemical communication-promoting pathogen(s) development within the fungal community. Interactions between the four recently identified pathogens were deciphered by in vitro pairwise co-culture bioassays. Both fungal growth and mycotoxin production patterns were monitored for 10 days. Results evidenced that Talaromyces stollii was the main fungal antagonist of Fusarium species, reducing by 22% the growth of Fusarium proliferatum. A collapse of beauvericin content was observed when FCR pathogens were cross-challenged while fumonisin concentrations were increased by up to 7-fold. Antagonism between Fusarium species and Talaromyces stollii was supported by the diffusion of a red pigmentation and droplets of red exudate at the mycelium surface. This study revealed that secondary metabolites could shape the fungal pathogenic community of a pineapple fruitlet and contribute to virulence promoting FCR establishment.


Asunto(s)
Ananas , Fusarium , Micotoxinas , Enfermedades de las Plantas , Talaromyces , Ananas/microbiología , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Fusarium/patogenicidad , Talaromyces/crecimiento & desarrollo , Talaromyces/metabolismo , Enfermedades de las Plantas/microbiología , Micotoxinas/metabolismo , Frutas/microbiología , Técnicas de Cocultivo
16.
Asian Biomed (Res Rev News) ; 18(3): 133-145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39175950

RESUMEN

Background: During breast cancer treatment, approximately half of the patients are prescribed psychotropic medication, such as selective serotonin reuptake inhibitors (SSRIs). Escitalopram oxalate is an SSRI used as an antidepressant. Objectives: In this study, by creating a breast cancer microenvironment with THP-1, MCF-7 and MDA-MB-231 breast cancer co-culture models were created. Methods: MCF-7, MDA-MB-231, and THP-1 cell lines to determine the concentration range of the cytotoxic effect of escitalopram oxalate MTS and MTT test were used. IC50 values were determined by the xCELLigence real-time cell analysis (RTCA) system. Apoptotic activities and cytokine levels were determined by flow cytometry. Results: In the xCELLigence real-time analysis made according to the results, the IC50 value of escitalopram oxalate was measured as 13.7 µM for MCF-7 and 10.9 µM for MDA-MB-231. The IC50 value was measured as 54.6 µM for MCF-7 and 58.4 µM for MDA-MB-231 in xCELLigence analysis with tamoxifen. According to the MTS test results, the IC50 value of tamoxifen for THP-1 was 92.03 µM and the IC50 value for escitalopram oxalate was 95.32 µM. In the co-culture model, the immunological effects of escitalopram oxalate on MCF-7 cells were 2.8%, 11.1%, 15.6%, 10.6%, and 12.1% for interleukin (IL)-1ß, IL-6, IL-8, IL-10, and TNF-α, respectively, while MDA effects on MB-231 cells, respectively, were 2.1%, 15.9%, 16.2%, 8.8%, and 11.8%. Conclusions: According to the results obtained, it was concluded that the immunological effects of escitalopram oxalate are more effective than tamoxifen and that it can be used as an adjunctive agent in breast cancer treatment.

17.
Pharmacology ; : 1-10, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089233

RESUMEN

INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) is currently the most common type of chronic liver disease. Semaglutide is a glucose-lowering drug administered for the treatment of type 2 diabetes mellitus (T2DM) and is clinically effective in the treatment of NAFLD. X-box binding protein 1 (XBP1) is related to the pathogenesis of both NAFLD and T2DM. The aim of the present study was to demonstrate whether the underlying mechanism of semaglutide treatment for NAFLD is via downregulation of the inositol-requiring transmembrane kinase/endonuclease-1α (IRE1α)-XBP1-CCAAT/enhancer binding protein α (C/EBPα) signaling pathway in macrophages. METHODS: In the present study, NAFLD cell modeling was induced by oleic acid (0.4 mm) and palmitic acid (0.2 mm). Hepatocytes (AML12) and macrophages (RAW264.7) were co-cultured in 6-well Transwell plates. Semaglutide (60 or 140 nm) was administrated for 24 h, while pioglitazone (2 µm) and toyocamycin (200 nm) were used as a positive control drug and a XBP1 inhibitor, respectively. Autophagy and apoptosis of AML12 cells were detected by transmission electron microscopy and Western blotting (WB). Hepatocyte steatosis was evaluated by adopting total intracellular triglyceride determination, analysis of the relative expression of proteins and genes associated with lipid metabolism and hepatocyte Oil red O staining. Detection of inflammation factors was conducted by ELISA and WB. To explore the underlying mechanism of NAFLD treatment with semaglutide, the relative expression of related proteins and genes were tested. RESULTS: Our study demonstrated that semaglutide treatment improved autophagy and inhibited apoptosis of hepatocytes, while notably ameliorating steatosis of hepatocytes. In addition, inflammation was attenuated in the NAFLD cell co-culture model after semaglutide administration. Semaglutide also significantly reduced the protein and gene expression levels of the IRE1α-XBP1-C/EBPα signaling pathway in macrophages. CONCLUSION: Semaglutide partially ameliorated NAFLD by downregulating the IRE1α-XBP1-C/EBPα signaling pathway in macrophages. These findings may provide a potential theoretical basis for semaglutide therapy for NAFLD.

18.
Am J Cancer Res ; 14(7): 3222-3240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113861

RESUMEN

Macrophages, as the largest immune cell group in tumour tissues, play a crucial role in influencing various malignant behaviours of tumour cells and tumour immune evasion. As the research on macrophages and cancer immunotherapy develops, the importance of appropriate research models becomes increasingly evident. The development of organoids has bridged the gap between traditional two-dimensional (2D) cultures and animal experiments. Recent studies have demonstrated that organoids exhibit similar physiological characteristics to the source tissue and closely resemble the in vivo genome and molecular markers of the source tissue or organ. However, organoids still lack an immune component. Developing a co-culture model of organoids and macrophages is crucial for studying the interaction and mechanisms between tumour cells and macrophages. This paper presents an overview of the establishment of co-culture models, the current research status of organoid macrophage interactions, and the current status of immunotherapy. In addition, the application prospects and shortcomings of the model are explained. Ultimately, it is hoped that the co-culture model will offer a preclinical testing platform for maximising a precise cancer immunotherapy strategy.

19.
Front Neurosci ; 18: 1401571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114482

RESUMEN

Introduction: One of the most common causes of vision loss in the elderly population worldwide is age-related macular degeneration (AMD). Subsequently, the number of people affected by AMD is estimated to reach approximately 288 million by the year 2040. The aim of this study was to develop an ex vivo model that simulates various aspects of the complex AMD pathogenesis. Methods: For this purpose, primary porcine retinal pigment epithelial cells (ppRPE) were isolated and cultured. One group was exposed to medium containing sodium iodate (NaIO3) to induce degeneration. The others were exposed to different supplemented media, such as bovine serum albumin (BSA), homogenized porcine retinas (HPR), or rod outer segments (ROOS) for eight days to promote retinal deposits. Then, these ppRPE cells were cocultured with porcine neuroretina explants for another eight days. To assess the viability of ppRPE cells, live/dead assay was performed at the end of the study. The positive RPE65 and ZO1 area was evaluated by immunocytochemistry and the expression of RLBP1, RPE65, and TJP1 was analyzed by RT-qPCR. Additionally, drusen (APOE), inflammation (ITGAM, IL6, IL8, NLRP3, TNF), oxidative stress (NFE2L2, SOD1, SOD2), and hypoxia (HIF1A) markers were investigated. The concentration of the inflammatory cytokines IL-6 and IL-8 was determined in medium supernatants from day 16 and 24 via ELISA. Results: Live/dead assay suggests that especially exposure to NaIO3 and HPR induced damage to ppRPE cells, leading in a significant ppRPE cell loss. All supplemented media resulted in decreased RPE-characteristic markers (RPE65; ZO-1) and gene expression like RLBP1 and RPE65 in the cultured ppRPE cells. Besides, some inflammatory, oxidative as well as hypoxic stress markers were altered in ppRPE cells cultivated with NaIO3. The application of HPR induced an enhanced APOE expression. Pre-exposure of the ppRPE cells led to a diminished number of cones in all supplemented media groups compared to controls. Discussion: Overall, this novel coculture model represents an interesting initial approach to incorporating deposits into coculture to mimic AMD pathogenesis. Nevertheless, the effects of the media used need to be investigated in further studies.

20.
mSphere ; : e0025124, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120135

RESUMEN

Although most cyanobacteria grow in visible light (VL; λ = 400-700 nm), some cyanobacteria can also use far-red light (FRL; λ = 700-800 nm) for oxygenic photosynthesis by performing far-red light photoacclimation. These two types of cyanobacteria can be found in the same environment. However, how they respond to each other remains unknown. Here, we reveal that coculture stresses FRL-using Chlorogloeopsis fritschii PCC 9212 and VL-using Synechocystis sp. PCC 6803. No significant growth difference was found in Synechocystis sp. PCC 6803 between the coculture and the monoculture. Conversely, the growth of Chlorogloeopsis fritschii PCC 9212 was suppressed in VL under coculture. According to transcriptomic analysis, Chlorogloeopsis fritschii PCC 9212 in coculture shows low transcript levels of metabolic activities and high transcript levels of ion transporters, with the differences being more noticeable in VL than in FRL. The transcript levels of stress responses in coculture were likewise higher than in monoculture in Synechocystis sp. PCC 6803 under FRL. The low transcript level of metabolic activities in coculture or the inhibition of cyanobacterial growth indicates a possible negative interaction between these two cyanobacterial strains.IMPORTANCEThe interaction between two cyanobacterial species is the primary focus of this study. One species harvests visible light, while the other can harvest far-red and visible light. Prior research on cyanobacteria interaction concentrated on its interactions with algal, coral, and fungal species. Interactions between cyanobacterial species were, nevertheless, rarely discussed. Thus, we characterized the interaction between two cyanobacterial species, one capable of photosynthesis using far-red light and the other not. Through experimental and bioinformatic approaches, we demonstrate that when one cyanobacterium thrives under optimal light conditions, it stresses the remaining cyanobacterial species. We contribute to an ecological understanding of these two kinds of cyanobacteria distribution patterns. Cyanobacteria that utilize far-red light probably disperse in environments with limited visible light to avoid competition with other cyanobacteria. From a biotechnological standpoint, this study suggests that the simultaneous cultivation of two cyanobacterial species in large-scale cultivation facilities may reduce the overall biomass yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA