Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 368: 122235, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39159574

RESUMEN

Specific mechanisms of precipitation change due to global climate variability on plant communities in coastal salt marsh ecosystems remain unknown. Hence, a field manipulative precipitation experiment was established in 2014 and 5 years of field surveys of vegetation from 2017 to 2021 to explore the effects of precipitation changes on plant community composition. The results showed that changes in plant community composition were driven by dominant species, and that the dominance of key species changed significantly with precipitation gradient and time, and that these changes ultimately altered plant community traits (i.e., community density, height, and species richness). Community height increased but community density decreased with more precipitation averaged five years. Furthermore, changes in precipitation altered dominant species composition and functional groups mainly by influencing soil salinity. Salinity stress caused by decreased precipitation shifted species composition from a dominance of taller perennials and grasses to dwarf annuals and forbs, while the species richness decreased. Conversely, soil desalination caused by increased precipitation increased species richness, especially increasing in the dominance of grasses and perennials. Specifically, Apocynaceae became dominance from rare while Amaranthaceae decreased in response to increased precipitation, but Poaceae was always in a position of dominance. Meanwhile, the dominance of grasses and perennials has the cumulative effect of years and their proportion increased under the increased 60% of ambient precipitation throughout the years. However, the annual forb Suaeda glauca was gradually losing its dominance or even becoming extinct over years. Our study highlights that the differences in plant salinity tolerance are key to the effects of precipitation changes on plant communities in coastal salt marsh. These findings aim to provide a theoretical basis for predicting vegetation dynamics and developing ecological management strategies to adapt to future precipitation changes.


Asunto(s)
Salinidad , Suelo , Humedales , Suelo/química , Ecosistema , Plantas , Biodiversidad , Lluvia , Poaceae/crecimiento & desarrollo
2.
Microorganisms ; 12(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39203436

RESUMEN

Salt marshes are highly dynamic and biologically diverse ecosystems that serve as natural habitats for numerous salt-tolerant plants (halophytes). We investigated the bacterial communities associated with the roots and leaves of plants growing in the coastal salt marshes of the Bayfront Beach, located in Mobile, Alabama, United States. We compared external (epiphytic) and internal (endophytic) communities of both leaf and root plant organs. Using 16S rDNA amplicon sequencing methods, we identified 10 bacterial phyla and 59 different amplicon sequence variants (ASVs) at the genus level. Bacterial strains belonging to the phyla Proteobacteria, Bacteroidetes, and Firmicutes were highly abundant in both leaf and root samples. At the genus level, sequences of the genus Pseudomonas were common across all four sample types, with the highest abundance found in the leaf endophytic community. Additionally, Pantoea was found to be dominant in leaf tissue compared to roots. Our study revealed that plant habitat (internal vs. external for leaves and roots) was a determinant of the bacterial community structure. Co-occurrence network analyses enabled us to discern the intricate characteristics of bacterial taxa. Our network analysis revealed varied levels of ASV complexity in the epiphytic networks of roots and leaves compared to the endophytic networks. Overall, this study advances our understanding of the intricate composition of the bacterial microbiota in habitats (epiphytic and endophytic) and organs (leaf and root) of coastal salt marsh plants and suggests that plants might recruit habitat- and organ-specific bacteria to enhance their tolerance to salt stress.

3.
Sci Total Environ ; 945: 174003, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879037

RESUMEN

Coastal salt marsh wetlands not only sequester a large amount of organic carbon, mitigating the effect of climate change, but also nurture rich wetland resources and diverse ecological environments. In this study, habitat pattern and quality of the Jiangsu Yancheng Wetland Rare Birds National Nature Reserve were studied. The evolution of habitat patterns was analyzed using the U-Net model and Sentinel-2 data. The habitat quality was evaluated using the InVEST model, while the future habitat pattern in 2027 under different scenarios were simulated using the PLUS model. Our results showed that, during 2017-2022, the Suaeda salsa habitat showed a net decrease in area of 2077.61 ha, while Spartina alterniflora and Phragmites australis habitats manifested a net increase in different degrees. The overall habitat pattern was characterized by fragmentation decline and regularization enhancement. The habitat quality decreased from 0.75 to 0.72, mainly due to the loss of the S. salsa habitat and the expansion of the P. australis habitat. The simulation results indicated that, the habitat quality is expected to further decline to 0.71 under the natural development scenario, and 390.27 ha of S. salsa habitat will convert to P. australis. While in government control scenario, the habitat quality is expected to improve to 0.78, which was 0.07 higher than that in natural development scenario, and S. salsa habitat can be restored well. This study provides a scientific basis for the protection of suitable habitats for waterfowl and is crucial for the ecological conservation and management planning of nature reserves and coastal salt marsh wetlands.


Asunto(s)
Conservación de los Recursos Naturales , Humedales , Conservación de los Recursos Naturales/métodos , China , Cambio Climático , Ecosistema , Monitoreo del Ambiente , Animales , Poaceae
4.
Environ Pollut ; 357: 124465, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38942280

RESUMEN

The microbial community colonized on microplastics (MPs), known as the 'plastisphere', has attracted extensive concern owing to its environmental implications. Coastal salt marshes, which are crucial ecological assets, are considered sinks for MPs. Despite their strong spatial heterogeneity, there is limited information on plastisphere across diverse environments in coastal salt marshes. Herein, a 1-year field experiment was conducted at three sites in the Yancheng salt marsh in China. This included two sites in the intertidal zone, bare flat (BF) and Spartina alterniflora vegetation area (SA), and one site in the supratidal zone, Phragmites australis vegetation area (PA). Petroleum-based MPs (polyethylene and expanded polystyrene) and bio-based MPs (polylactic acid and polybutylene succinate) were employed. The results revealed significant differences in bacterial community composition between the plastisphere and sediment at all three sites examined, and the species enriched in the plastisphere exhibited location-specific characteristics. Overall, the largest difference was observed at the SA site, whereas the smallest difference was observed at the BF site. Furthermore, the MP polymer types influenced the composition of the bacterial communities in the plastisphere, also exhibiting location-specific characteristics, with the most pronounced impact observed at the PA site and the least at the BF site. The polybutylene succinate plastisphere bacterial communities at the SA and PA sites were quite different from the plastispheres from the other three MP polymer types. Co-occurrence network analyses suggested that the bacterial community network in the BF plastisphere exhibited the highest complexity, whereas the network in the SA plastisphere showed relatively sparse interactions. Null model analyses underscored the predominant role of deterministic processes in shaping the assembly of plastisphere bacterial communities across all three sites, with a more pronounced influence observed in the intertidal zone than in the supratidal zone. This study enriches our understanding of the plastisphere in coastal salt marshes.


Asunto(s)
Bacterias , Microbiota , Humedales , Bacterias/clasificación , Bacterias/aislamiento & purificación , China , Microplásticos , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
5.
Ecol Appl ; : e2754, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36177771

RESUMEN

The coastal wetland is easily invaded by alien species due to locating in the land and sea transitional area. As a potential driving regeneration force, the soil seed bank is vital to the community restoration and species diversity protection. To reveal the long-term Spartina alterniflora invasion impact on the soil seed banks and regenerated communities, we investigated the seed banks under the different vegetation types (S. alterniflora, Phragmites australis, Scirpus mariqueter, ruderal and unvegetated site) and soil depths (0-5 and 5-10 cm) in the coastal salt marsh wetland, Chongming island, eastern China. The results showed that the soil seed bank richness and species density under different vegetation types were higher than the aboveground vegetation, and those of 0-5 cm seed banks were higher than 5-10 cm, except for the unvegetated site. The species richness and S. alterniflora seed proportion in the seed banks under S. alterniflora communities (S.AS) were lower and larger respectively than those of other sites. The species composition between S.AS and the aboveground communities showed high similarity with aggregation phylogenetic structures in two soil depths. The seed bank variations at 0-5 and 5-10 cm depths were interpreted 3.03% and 2.25% by the aboveground communities, while 4.92% and 5.55% were interpreted by the soil microbial biomass. The SEM model explained 98.1% and 91.8% of the seed banks richness at the 0-5 cm depth and 5-10 cm depth, respectively, and explained 98.8% and 46.1% of the seed banks species density at the 0-5 cm depth and 5-10 cm depth, respectively. The aboveground vegetation biomass and abundance directly affected the 0-5 cm seed banks richness and species density, while its height and biomass only affected the 5-10 cm seed banks species density. The 0-10 cm soil depth microbial biomass indirectly affected the 0-5 cm seed banks richness and species density, while affected the 5-10 cm seed banks richness. Soil physical and chemical properties only indirectly affected the 0-5 cm seed banks species density. The results provided a reference for the ecological evaluation of the impacts of S. alterniflora invasion into the coastal salt marsh wetland of eastern China, and guidance for the protection and restoration of the native plant communities.

6.
Mol Ecol ; 31(17): 4478-4494, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35789059

RESUMEN

Microbiologically driven ecosystem processes can be profoundly altered by alien plant invasions. There is limited understanding of the ecological mechanisms orchestrating different microbial constituents and their roles in emerging functional properties under plant invasions. Here, we investigated soil microbial communities and functions using high-throughput amplicon sequencing and GeoChip technology, respectively, along a chronological gradient of smooth cordgrass invasion in salt marshes located in the Yellow River Estuary, China. We found a positive correlation between microbial diversity and the duration age of invasion, and both bacterial and fungal communities showed consistent changes with invasion. Soil microbial metabolic potential, as indicated by the abundance of microbial functional genes involved in biogeochemical cycling, decreased in response to invasion. As a consequence, declining soil microbial metabolisms as a result of plant invasion facilitated carbon accumulation in invaded salt marshes. Bacteria and fungi exhibited distinct contributions to assembly processes along the invasion gradient: bacterial communities were mainly driven by selection and dispersal limitation, while fungi were dramatically shaped by stochastic processes. Soil microbial-mediated functions were taxon-specific, as indicated by community-function relationships. This study demonstrates the distinct contributions of microbial constituents to microbial community assembly and functions and sheds light on the implications of plant invasion on microbiologically driven ecosystem processes in coastal wetlands.


Asunto(s)
Microbiota , Humedales , Bacterias/genética , China , Ecosistema , Especies Introducidas , Microbiota/genética , Plantas , Poaceae/genética , Suelo/química , Microbiología del Suelo
7.
Mar Pollut Bull ; 172: 112848, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34403926

RESUMEN

Regional- and national-scale emissions of chlorofluorocarbons (CFCs), especially in Eastern China, are of great concern to environmentalists and policy makers. To determine the source-sink dynamics of coastal salt marshes for CFC-11 and CFC-12 in the local atmosphere, we studied a coastal salt marsh in Northern Jiangsu Province, taking measurements of the atmospheric concentrations and fluxes of CFC-11 and CFC-12 using static flux chambers in August (growing season) and December (non-growing season) of 2013, and along both creek-side and vegetated transects. We observed unexpectedly high concentrations of CFC-11 (676.5 × 10-12) and CFC-12 (794.6 × 10-12) in the salt marsh in 2013, with predominantly non-local emissions. Overall, the study salt marsh acted as a net sink for CFC-11 and CFC-12, with the average flux ranging from -11.4 µg m-2 h-1 to 5.0 µg m-2 h-1 for CFC-11 and from -7.4 µg m-2 h-1 to 0.7 µg m-2 h-1 for CFC-12. This clearly indicates that the high concentrations of CFC-11 and CFC-12 measured in the atmosphere were not caused by local emissions; terrigenous sources most likely act as the main exogenous input pathway. Our study suggests that salt marsh ecosystems may be worthy of attention as sinks for CFC-11 and CFC-12; as such, the ecological restoration of salt marshes is critical to better offset increasing CFC-11 and CFC-12 emissions.


Asunto(s)
Ecosistema , Humedales , Atmósfera , China , Estaciones del Año
8.
J Microbiol Biotechnol ; 31(3): 408-418, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33397833

RESUMEN

The diversity and plant growth-promoting ability of fungal endophytes that are associated with five halophytic plant species (Phragmites australis, Suaeda australis, Limonium tetragonum, Suaeda glauca Bunge, and Suaeda maritima) growing in the Buan salt marsh on the west coast of South Korea have been explored. About 188 fungal strains were isolated from these plant samples' roots and were then studied with the use of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2). The endophytic fungal strains belonged to 33 genera. Alternaria (18%) and Fusarium (12.8%), of the classes Dothideomycetes and Sordariomycetes, were most rampant in the coastal salt marsh plants. There was a higher diversity in fungal endophytes that are isolated from S. glauca Bunge than in isolates from other coastal salt marsh plants. Plant growth-promoting experiments with the use of Waito-C rice seedlings show that some of the fungal strains could encourage a more efficient growth than others. Furthermore, gibberellins (GAs) GA1, GA3, and GA9 were seen in the Sa-1-4-3 isolate (Acrostalagmus luteoalbus) culture filtrate with a gas chromatography/mass spectrometry.


Asunto(s)
Alternaria , Endófitos/clasificación , Fusarium , Plantas Tolerantes a la Sal/microbiología , Humedales , Alternaria/clasificación , Alternaria/aislamiento & purificación , Ascomicetos/metabolismo , Biodiversidad , ADN de Hongos/genética , Endófitos/aislamiento & purificación , Fusarium/clasificación , Fusarium/aislamiento & purificación , Giberelinas/metabolismo , Oryza/microbiología , Filogenia , Reguladores del Crecimiento de las Plantas , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa , República de Corea , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Análisis de Secuencia de ADN , Simbiosis
9.
Front Microbiol ; 10: 1063, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139174

RESUMEN

The diversity and functional roles of the plant associated endophytic actinobacteria in unique habitats remain poorly understood. In this paper, we examined the phylogenetic diversity and community composition of endophytic actinobacteria associated with native coastal salt marsh plants in Jiangsu, China using a combination of cultivation and 16S rRNA gene-based high-throughput sequencing (HTS) methods. Further, we evaluated the antifungal, fibrinolytic activities and the secondary metabolite biosynthesis potential of isolates via gene screening. A total of 278 actinobacterial isolates were isolated from 19 plant samples. 16S rRNA gene sequencing revealed that the isolates were highly diverse and belonged to 23 genera within the Actinomycetales order, with Streptomyces, Saccharopolyspora, and Pseudonocardia comprising the most abundant genera. In addition, more than 10 of the isolates were novel actinobacterial taxa distributed across eight genera. HTS analyses of seven representative plant root samples revealed that Actinobacteria phylum constituted 0.04-28.66% of root endophytic bacterial communities. A total of four actinobacterial classes, 14 orders, 35 families, and 63 known genera were detected via HTS, and these communities were found to be dominated by the members of the order Actinomycetales including the genera Streptomyces, Mycobacterium, Arthrobacter, Nocardioides, and Micromonospora. In addition, 30.4% of the representative isolates exhibited antifungal activities, 40.5% of them showed fibrinolytic activities, while 43.0% of the strains harbored secondary metabolite biosynthesis genes. These results demonstrated that coastal salt marsh plants in the Jiangsu Province represented an underexplored new reservoir of diverse and novel endophytic actinobacteria that may be of potential interest in the discovery of bioactive compounds with potential as biocontrol agents and for fibrinolytic enzyme production.

10.
Syst Appl Microbiol ; 41(5): 516-527, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29934111

RESUMEN

Actinobacteria from special habitats are of interest due to their producing of bioactive compounds and diverse ecological functions. However, little is known of the diversity and functional traits of actinobacteria inhabiting coastal salt marsh soils. We assessed actinobacterial diversity from eight coastal salt marsh rhizosphere soils from Jiangsu Province, China, using culture-based and 16S rRNA gene high throughput sequencing (HTS) methods, in addition to evaluating their plant growth-promoting (PGP) traits of isolates. Actinobacterial sequences represented 2.8%-43.0% of rhizosphere bacterial communities, as determined by HTS technique. The actinobacteria community comprised 34 families and 79 genera. In addition, 196 actinobacterial isolates were obtained, of which 92 representative isolates were selected for further 16S rRNA gene sequencing and phylogenetic analysis. The 92 strains comprised seven suborders, 12 families, and 20 genera that included several potential novel species. All representative strains were tested for their ability of producing indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), hydrolytic enzymes, and phosphate solubilization. Based on the presence of multiple PGP traits, two strains, Streptomyces sp. KLBMP S0051 and Micromonospora sp. KLBMP S0019 were selected for inoculation of wheat seeds grown under salt stress. Both strains promoted seed germination, and KLBMP S0019 significantly enhanced seedling growth under NaCl stress. Our study demonstrates that coastal salt marsh rhizosphere soils harbor a diverse reservoir of actinobacteria that are potential resources for the discovery of novel species and functions. Moreover, several of the isolates identified here are good candidates as PGP bacteria that may contribute to plant adaptions to saline soils.


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Rizosfera , Plantas Tolerantes a la Sal/microbiología , Humedales , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Biodiversidad , China , ADN Bacteriano/genética , Hidrolasas/metabolismo , Océanos y Mares , ARN Ribosómico 16S/genética , Plantas Tolerantes a la Sal/fisiología , Análisis de Secuencia de ADN , Cloruro de Sodio , Microbiología del Suelo , Estrés Fisiológico , Triticum/crecimiento & desarrollo , Triticum/microbiología , Triticum/fisiología
11.
Mar Pollut Bull ; 129(1): 275-283, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29680549

RESUMEN

Constructed coastal marsh regulates land-born nitrogen (N) loadings through salinity-dependent microbial N transformation processes. A hypothesis that salinity predominantly controls N removal in marsh was tested through incubation in a closed system with added-15NH4+ using sediments collected from five sub-marshes in Shihwa marsh, Korea. Time-course patterns of concentrations and 15N-atom% of soil-N pools were analyzed. Sediments having higher salinity and lower soil organic-C and acid-extractable organic-N exhibited slower rates of N mineralization and immobilization, nitrification, and denitrification. Rates of denitrification were not predicted well by sediment salinity but by its organic-C, indicating heterotrophic denitrification. Denitrification dominated N-loss from this marsh, and nitrogen removal capacity of this marsh was estimated at 337 kg N day-1 (9.9% of the daily N-loadings) considering the current rooting depth of common reeds (1.0 m). We showed that sediment N removal decreases with increasing salinity and can increase with increasing organic-C for heterotrophic denitrification.


Asunto(s)
Sedimentos Geológicos/química , Ciclo del Nitrógeno , Isótopos de Nitrógeno/análisis , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Humedales , Desnitrificación , Nitrificación , República de Corea , Salinidad
12.
Environ Sci Pollut Res Int ; 25(7): 6352-6363, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29247420

RESUMEN

Our previous study found that a salt marsh in eastern China can act as a large CH3Cl sink. One striking finding of this previous study was a strong relationship between high-ambient CH3Cl concentrations and fluxes during the growing season. Moreover, the high-ambient CH3Cl concentration was likely to be related to local biomass burning. However, implementation of biomass burning prohibition policies has effectively reduced biomass burning. Therefore, we predicted that the prohibition of biomass burning would alter CH3Cl concentration and flux within the eastern Chinese coastal salt marsh. In this study, we used static flux chambers to measure CH3Cl fluxes in the early (July of 2004 and January of 2005) and middle-late stages (August and December of 2013) of biomass burning prohibition of along a creek and vegetation transects of the salt marsh. After implementation of the biomass burning prohibition, the concentration and flux of CH3Cl directly related to biomass burning changed remarkably. During the middle-late stage of prohibition, the initial CH3Cl concentration was significantly reduced compared to during the early stage of prohibition. Reductions in atmospheric CH3Cl concentration were especially apparent during the growing season, when biomass burning was prohibited and atmospheric CH3Cl concentration dropped to levels nearly as low as the Northern Hemisphere background concentration. Atmospheric CH3Cl concentration significantly varied throughout the salt marsh, with the highest concentrations appearing over the inland areas and mudflat and lower values occurring over the middle locations. This spatial distribution of CH3Cl may have been directly related to the existence and distribution of potential CH3Cl sources, such as coastal seawater, terrestrial biomass burning, and senescent and decaying aboveground biomass. These changes in initial CH3Cl concentration caused by the biomass burning prohibition may eventually lead to shift in the salt marsh from the tendency to act as a CH3Cl sink to the tendency to act as a CH3Cl source. When the initial atmospheric CH3Cl concentration was high, the vegetation stands acted as CH3Cl sinks. Conversely, they became CH3Cl sources. Therefore, we conclude that the biomass burning prohibition altered the ecosystem-atmosphere exchange of CH3Cl within the studied eastern Chinese coastal salt marsh.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Monitoreo del Ambiente/métodos , Política Ambiental/tendencias , Cloruro de Metilo/análisis , Humedales , Atmósfera/química , Biomasa , China , Estaciones del Año , Agua de Mar/química
13.
Ying Yong Sheng Tai Xue Bao ; 27(4): 1145-1151, 2016 Apr 22.
Artículo en Chino | MEDLINE | ID: mdl-29732770

RESUMEN

To investigate the effects of Spartina alterniflora invasion on methane emission from coastal salt marsh, three S. alterniflora invasive levels were established nearby Taizhou City of Zhejiang Province, including native community, mixed community with S. alterniflora and native weeds, and mono-community of S. alterniflora. The results showed that the CH4 flux in the three communities ranged from 0.68 to 5.88 mg·m-2·h-1, and CH4 flux increased significantly with S. alterniflora invasion. CH4 flux in the mono-community of S. alterniflora being 8.7 and 2.3 times as that in the native and mixed communities, respectively. S. alterniflora invasion increased significantly methanogens number, methane production potential, methanotrophs number, methane oxidation potential, plant biomass, soil organic carbon content and soil pH, but decreased significantly soil total nitrogen content. The correlation analysis showed that the CH4 flux was positively related to methanogens number, methane production potential, methanotrophs number, methane oxidation potential, plant biomass and soil pH, but negatively related to soil total nitrogen content. Overall, our results suggested that S. alterniflora invasion improved plant biomass production and soil pH, resulting in the increases in methanogens number and methane production potential to further drive soil CH4 emission.


Asunto(s)
Especies Introducidas , Metano/análisis , Poaceae/crecimiento & desarrollo , Humedales , Biomasa , China , Nitrógeno/química , Plantas , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA