Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecology ; 105(4): e4265, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380597

RESUMEN

Anthropogenic climate change has increased the frequency of drought, wildfire, and invasions of non-native species. Although high-severity fires linked to drought can inhibit recovery of native vegetation in forested ecosystems, it remains unclear how drought impacts the recovery of other plant communities following wildfire. We leveraged an existing rainfall manipulation experiment to test the hypothesis that reduced precipitation, fuel load, and fire severity convert plant community composition from native shrubs to invasive grasses in a Southern California coastal sage scrub system. We measured community composition before and after the 2020 Silverado wildfire in plots with three rainfall treatments. Drought reduced fuel load and vegetation cover, which reduced fire severity. Native shrubs had greater prefire cover in added water plots compared to reduced water plots. Native cover was lower and invasive cover was higher in postfire reduced water plots compared to postfire added and ambient water plots. Our results demonstrate the importance of fuel load on fire severity and plant community composition on an ecosystem scale. Management should focus on reducing fire frequency and removing invasive species to maintain the resilience of coastal sage scrub communities facing drought. In these communities, controlled burns are not recommended as they promote invasive plants.


Asunto(s)
Especies Introducidas , Incendios Forestales , Ecosistema , Sequías , Plantas , Agua
2.
Glob Chang Biol ; 30(1): e17117, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273574

RESUMEN

Fire is a dominant force shaping patterns of plant diversity in Mediterranean-type ecosystems. In these biodiversity hotspots, including California's endangered coastal scrub, many species remain hidden belowground as seeds and bulbs, only to emerge and flower when sufficient rainfall occurs after wildfire. The unique adaptations possessed by these species enable survival during prolonged periods of unfavorable conditions, but their continued persistence could be threatened by nonnative plant invasion and environmental change. Furthermore, their fleeting presence aboveground makes evaluating these threats in situ a challenge. For example, nitrogen (N) deposition resulting from air pollution is a well-recognized threat to plant diversity worldwide but impacts on fire-following species are not well understood. We experimentally evaluated the impact of N deposition on post-fire vegetation cover and richness for three years in stands of coastal sage scrub that had recently burned in a large wildfire in southern California. We installed plots receiving four levels of N addition that corresponded to the range of N deposition rates in the region. We assessed the impact of pre-fire invasion status on vegetation dynamics by including plots in areas that had previously been invaded by nonnative grasses, as well as adjacent uninvaded areas. We found that N addition reduced native forb cover in the second year post-fire while increasing the abundance of nonnative forbs. As is typical in fire-prone ecosystems, species richness declined over the three years of the study. However, N addition hastened this process, and native forb richness was severely reduced under high N availability, especially in previously invaded shrublands. An indicator species analysis also revealed that six functionally and taxonomically diverse forb species were especially sensitive to N addition. Our results highlight a new potential mechanism for the depletion of native species through the suppression of ephemeral post-fire bloom events.


Asunto(s)
Ecosistema , Nitrógeno , Plantas , Biodiversidad , Poaceae
3.
Am J Bot ; 109(1): 9-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34636412

RESUMEN

Woody, evergreen shrublands are the archetypal community in mediterranean-type ecosystems, and these communities are profoundly changed when they undergo vegetation-type conversion (VTC) to become annual, herb-dominated communities. Recently, VTC has occurred throughout southern California chaparral shrublands, likely with changes in important ecosystem functions. The mechanisms that lead to VTC and subsequent changes to ecosystem processes are important to understand as they have regional and global implications for ecosystem services, climate change, land management, and policy. The main drivers of VTC are altered fire regimes, aridity, and anthropogenic disturbance. Some changes to ecosystem function are certain to occur with VTC, but their magnitudes are unclear, whereas other changes are unpredictable. I present two hypotheses: (1) VTC leads to warming that creates a positive feedback promoting additional VTC, and (2) altered nitrogen dynamics create negative feedbacks and promote an alternative stable state in which communities are dominated by herbs. The patterns described for California are mostly relevant to the other mediterranean-type shrublands of the globe, which are biodiversity hotspots and threatened by VTC. This review examines the extent and causes of VTC, ecosystem effects, and future research priorities.


Asunto(s)
Ecosistema , Incendios , Biodiversidad , Cambio Climático , Nitrógeno
4.
J Phycol ; 57(3): 886-902, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33583028

RESUMEN

Cyanobacteria are crucial ecosystem components in dryland soils. Advances in describing α-level taxonomy are needed to understand what drives their abundance and distribution. We describe Trichotorquatus gen. nov. (Oculatellaceae, Synechococcales, Cyanobacteria) based on four new species isolated from dryland soils including the coastal sage scrub near San Diego, California (USA), the Mojave and Colorado Deserts with sites at Joshua Tree National Park and Mojave National Preserve, California (USA), and the Atacama Desert (Chile). The genus is morphologically characterized by having thin trichomes (<4.5 µm wide), cells both shorter and longer than wide, rarely occurring single and double false branching, necridia appearing singly or in rows, and sheaths with a distinctive collar-like fraying and widening mid-filament, the feature for which the genus is named. The genus is morphologically nearly identical with Leptolyngbya sensu stricto but is phylogenetically quite distant from that genus. It is consequently a cryptic genus that will likely be differentiated in future studies based on 16S rRNA sequence data. The type species, T. maritimus sp. nov. is morphologically distinct from the other three species, T. coquimbo sp. nov., T. andrei sp. nov. and T. ladouxae sp. nov. However, these latter three species are morphologically very close and are considered by the authors to be cryptic species. All species are separated phylogenetically based on sequence of the 16S-23S ITS region. Three distinct ribosomal operons were recovered from the genus, lending difficulty to recognizing further diversity in this morphologically cryptic genus.


Asunto(s)
Cianobacterias , Ecosistema , Técnicas de Tipificación Bacteriana , Chile , Colorado , Cianobacterias/genética , ADN Bacteriano , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Estados Unidos
5.
Insects ; 12(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562453

RESUMEN

Global climate change is causing more frequent and severe droughts, which could have serious repercussions for the maintenance of biodiversity. Here, we compare native bee assemblages collected via bowl traps before and after a severe drought event in 2014 in San Diego, California, and examine the relative magnitude of impacts from drought in fragmented habitat patches versus unfragmented natural reserves. Bee richness and diversity were higher in assemblages surveyed before the drought compared to those surveyed after the drought. However, bees belonging to the Lasioglossum subgenus Dialictus increased in abundance after the drought, driving increased representation by small-bodied, primitively eusocial, and generalist bees in post-drought assemblages. Conversely, among non-Dialictus bees, post-drought years were associated with decreased abundance and reduced representation by eusocial species. Drought effects were consistently greater in reserves, which supported more bee species, than in fragments, suggesting that fragmentation either had redundant impacts with drought, or ameliorated effects of drought by enhancing bees' access to floral resources in irrigated urban environments. Shifts in assemblage composition associated with drought were three times greater compared to those associated with habitat fragmentation, highlighting the importance of understanding the impacts of large-scale climatic events relative to those associated with land use change.

6.
Sci Total Environ ; 754: 142204, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254913

RESUMEN

Anthropogenic nitrogen (N) deposition has affected the primary production of terrestrial ecosystems worldwide; however, ecosystem responses often vary over time because of transient responses, interactions between N, precipitation, and/or other nutrients, and changes in plant species composition. Here we report N-induced changes in above- and below-ground standing crop and production over an 11-year period for two semi-arid shrublands, chaparral and coastal sage scrub (CSS), of Southern California. Shrubs were exposed to 50 kgN ha-1 in the fall of each year to simulate the accumulation of dry N deposition, and shoot and root biomass and leaf area index (LAI) were measured every 3 months to assess how biomass production responded to chronic, dry N inputs. N inputs significantly altered above- and below-ground standing crop, production, and LAI; however, N impacts varied over time. For chaparral, N inputs initially increased root production but suppressed shoot production; however, over time biomass partitioning reversed and plants exposed to N had significantly more shoot biomass. In CSS, N inputs caused aboveground production to increase only during wet years, and this interaction between added N and precipitation was due in part to a highly flexible growth response of CSS shrubs to increases in N and water availability and to a shift from slower-growing native shrubs to fast-growing introduced annuals. Together, these results indicate that long-term N inputs will lead to complex, spatially and temporally variable growth responses for these, and similar, Mediterranean-type shrublands.


Asunto(s)
Ecosistema , Nitrógeno , Biomasa , Nutrientes , Hojas de la Planta
7.
Ecology ; 100(10): e02853, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31351007

RESUMEN

Direct and indirect defenses are predicted to trade-off due to costs associated with redundancy in plant defense, but the factors mediating a plant's position along this trade-off axis are unknown. We conducted a bird exclusion experiment of nine sympatric shrub species to assess convergent associations among direct defense, indirect defense from birds, and shrub structural complexity, a trait predicted to influence bird foraging. We found high variation in defense; direct resistance varied four-fold, with indirect defense ranging from a 59% reduction to a 32% increase in herbivore density. These resistance strategies traded off and were mediated by plant structure; high complexity was associated with weaker indirect defense from birds, strong direct defense, and more predatory arthropods. Our findings suggest that species with growth forms that inhibit bird foraging invest more in direct defense and may provide refuge for arthropod predators. Accordingly, we provide evidence for a potentially widespread mechanism underlying the evolution of plant defenses.


Asunto(s)
Artrópodos , Aves , Animales , Herbivoria , Plantas
8.
Ecology ; 100(10): e02802, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31233614

RESUMEN

Climate change and shifting species composition have influenced ecosystem-scale phenology worldwide. For instance, invasive plant species have greater vegetation phenological sensitivity to climate change than native plant species in some regions, and hence invasion could modify how ecosystem carbon gain responds to increased drought frequencies expected with climate change. Results from a 4-yr drought experiment show that invasion reduced ecosystem potential for carbon gain via increased sensitivity to reduced rainfall. Using canopy greenness (Normalized Difference Vegetation Index, NDVI) as a proxy for potential ecosystem carbon gain, we show that areas invaded by herbaceous species had up to a 70% reduction in maximum NDVI under severe drought conditions as compared to areas dominated by native shrubs. Phenological differences between herbaceous- and shrub-dominated vegetation contributed to this reduction in potential ecosystem carbon gain because invaded areas had delayed green-up, especially under drought conditions, and shrub senescence was accelerated by drought. Hence, invasion by herbaceous species and increased drought frequencies are likely to act synergistically to reduce ecosystem capacity for carbon gain in this system. Our findings suggest that predicting ecosystem responses to future climate change could be improved by projecting of the spread of invasive species and accounting for phenological variation between native and invading species.


Asunto(s)
Sequías , Ecosistema , Cambio Climático , Especies Introducidas , Plantas
9.
Ecology ; 100(5): e02654, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30942484

RESUMEN

Predicting the long-term consequences of habitat alteration for the preservation of biodiversity and ecosystem function requires an understanding of how ecological filters drive taxonomic and functional biodiversity loss. Here, we test a set of predictions concerning the role of ecological filters in restructuring native bee assemblages inhabiting fragmented coastal sage scrub ecosystems in southern California, USA. In 2011 and 2012, we collected native bees in scrub habitat belonging to two treatment categories: large natural reserves and small habitat fragments embedded in an urban landscape. We compared bee assemblages in reserve and fragment sites with respect to their taxonomic and functional alpha diversity, beta diversity, assemblage composition, and mean geographical range size estimated via distribution maps compiled for this study from digitized specimen records. We found multiple lines of evidence that ecological filtering drove bee diversity loss in fragments: a disproportionate loss of functional diversity relative to taxonomic diversity, shifts in assemblage composition driven largely by the preferential extirpation of reserve-associated indicator species, and disproportionate loss of range-restricted species. However, we found no evidence of taxonomic or functional homogenization across fragment bee assemblages, suggesting that filtering was not sufficiently strong to cause a subset of functional traits (and their associated species) to dominate assemblages in fragments. Our results suggest that ecological filtering altered bee assemblages in habitat fragments, even when such fragments contained well-preserved native plant assemblages, underscoring the importance of preserving large areas of natural habitat for the conservation of bees (especially range-restricted taxa) and their associated ecological functions.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Abejas , California , Ecología , Plantas
10.
Plant Cell Environ ; 41(11): 2617-2626, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29904932

RESUMEN

Isohydry (maintenance of plant water potential at the cost of carbon gain) and anisohydry (gas exchange maintenance at the cost of declining plant water status) make up two ends of a stomatal drought response strategy continuum. However, few studies have merged measures of stomatal regulation with xylem hydraulic safety strategies based on in situ field measurements. The goal of this study was to characterize the stomatal and xylem hydraulic safety strategies of woody species in the biodiverse Mediterranean-type ecosystem region of California. Measurements were conducted in situ when California was experiencing the most severe drought conditions in the past 1,200 years. We found coordination among stomatal, hydraulic, and standard leaf functional traits. For example, stem xylem vulnerability to cavitation (P50 ) was correlated with the water potential at stomatal closure (Pclose ); more resistant species had a more negative water potential at stomatal closure. The degree of isohydry-anisohydry, defined at Pclose -P50 , was correlated with the hydraulic safety margin across species; more isohydric species had a larger hydraulic safety margin. In addition, we report for the first time Pclose values below -10 MPa. Measuring these traits in a biodiverse region under exceptional drought conditions contributes to our understanding of plant drought responses.


Asunto(s)
Tallos de la Planta/fisiología , Estomas de Plantas/fisiología , Árboles/fisiología , Xilema/fisiología , Deshidratación , Sequías , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Agua/metabolismo
11.
Am J Bot ; 104(12): 1816-1824, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29167156

RESUMEN

PREMISE OF THE STUDY: Mediterranean-type climate ecosystems experience significant variability in precipitation within and across years and may be characterized by periods of extreme drought followed by a brief, high-intensity precipitation pulse. Rapid root growth could be a key factor in effective utilization of precipitation pulses, leading to higher rates of seedling establishment. Changes in root growth rate are rarely studied, however, and patterns in seedling root traits are not well explored. We investigated the influence of an extreme postdrought precipitation event on seedlings that occur in southern California coastal sage scrub. METHODS: We measured root elongation rate, root tip appearance rate, new leaf appearance rate, and canopy growth rate on 18 mediterranean species from three growth forms. KEY RESULTS: Root elongation rate responded more strongly to the precipitation pulse than did root tip appearance rate and either metric of aboveground growth. The majority of species exhibited a significant change in root growth rate within 1 week of the pulse. Responses varied in rapidity and magnitude across species, however, and were not generally predictable based on growth form. CONCLUSIONS: While the majority of species exhibited shifts in belowground growth following the pulse, the direction and magnitude of these morphological responses were highly variable within growth form. Understanding the implications of these different response strategies for plant fitness is a crucial next step to forecasting community dynamics within ecosystems characterized by resource pulses.


Asunto(s)
Magnoliopsida/fisiología , Raíces de Plantas/fisiología , Plantones/fisiología , Agua , Ecosistema , Especies Introducidas , Especificidad de la Especie
12.
Ecol Evol ; 7(9): 3123-3131, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28480011

RESUMEN

Plants employ strategies of tolerance, endurance, and avoidance to cope with aridity in space and time, yet understanding the differential importance of such strategies in determining patterns of abundance across a heterogeneous landscape is a challenge. Are the species abundant in drier microhabitats also better able to survive drought? Are there relationships among occupied sites and temporal dynamics that derive from physiological capacities to cope with stress or dormancy during unfavorable periods? We used a restoration project conducted on two slope aspects in a subwatershed to test whether species that were more abundant on more water-limited S-facing slopes were also better able to survive an extreme drought. The attempt to place many species uniformly on different slope aspects provided an excellent opportunity to test questions of growth strategy, niche preference, and temporal dynamics. Perennial species that established and grew best on S-facing slopes also had greater increases in cover during years of drought, presumably by employing drought tolerance and endurance techniques. The opposite pattern emerged for annual species that employed drought-escape strategies, such that annuals that occupied S-facing slopes were less abundant during the drought than those that were more abundant on N-facing slopes. Our results clarify how different functional strategies interact with spatial and temporal heterogeneity to influence population and community dynamics and demonstrate how large restoration projects provide opportunities to test fundamental ecological questions.

13.
Oecologia ; 184(1): 267-277, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28393274

RESUMEN

Anthropogenic nitrogen (N) deposition has caused a decline in native plant species and an increase in exotic plant species in many terrestrial ecosystems; however, vegetation change depends on the rate and/or duration of N input, individual species responses, interactions with other resources, and ecosystem properties such as species richness and canopy cover, soil texture, pH, and/or disturbance regime. Native shrub and exotic forb responses to N enrichment were evaluated over a 13-year field experiment in a mature coastal sage scrub (CSS) shrubland of southern California to test the hypothesis that dry-season N input will cause a decline in native shrubs and an increase in exotic annuals. Nitrogen enrichment caused the dominant native shrubs, Artemisia californica and Salvia mellifera, to respond differently, with A. californica initially increasing with N input but declining thereafter and S. mellifera declining consistently over the 13-year-period. Both species exhibited higher canopy dieback during drought conditions, especially in N plots. Brassica nigra, an exotic annual, invaded N plots significantly more than control plots, but only after 10 years of N addition and a prolonged drought, which increased native shrub canopy dieback. These results indicate a possible synergism between N enrichment and drought on native shrub and exotic forb abundance, which would have important implications for plant diversity in semi-arid shrublands of southwest US that are anticipated to experience an increase in anthropogenic N enrichment and the frequency and duration of drought.


Asunto(s)
Sequías , Ecosistema , Nitrógeno , Estaciones del Año , Suelo
14.
Glob Chang Biol ; 23(10): 4333-4345, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28319292

RESUMEN

Hotter, longer, and more frequent global change-type drought events may profoundly impact terrestrial ecosystems by triggering widespread vegetation mortality. However, severe drought is only one component of global change, and ecological effects of drought may be compounded by other drivers, such as anthropogenic nitrogen (N) deposition and nonnative plant invasion. Elevated N deposition, for example, may reduce drought tolerance through increased plant productivity, thereby contributing to drought-induced mortality. High N availability also often favors invasive, nonnative plant species, and the loss of woody vegetation due to drought may create a window of opportunity for these invaders. We investigated the effects of multiple levels of simulated N deposition on a Mediterranean-type shrubland plant community in southern California from 2011 to 2016, a period coinciding with an extreme, multiyear drought in the region. We hypothesized that N addition would increase native shrub productivity, but that this would increase susceptibility to drought and result in increased shrub loss over time. We also predicted that N addition would favor nonnatives, especially annual grasses, leading to higher biomass and cover of these species. Consistent with these hypotheses, we found that high N availability increased native shrub canopy loss and mortality, likely due to the higher productivity and leaf area and reduced water-use efficiency we observed in shrubs subject to N addition. As native shrub cover declined, we also observed a concomitant increase in cover and biomass of nonnative annuals, particularly under high levels of experimental N deposition. Together, these results suggest that the impacts of extended drought on shrubland ecosystems may be more severe under elevated N deposition, potentially contributing to the widespread loss of native woody species and vegetation-type conversion.


Asunto(s)
Sequías , Especies Introducidas , Nitrógeno , Plantas , California , Ecosistema
15.
Environ Entomol ; 45(4): 983-90, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27257121

RESUMEN

Harvester ants can be the dominant seed predators on plants by collecting and eating seeds and are known to influence plant communities. Harvester ants are abundant in coastal sage scrub (CSS), and CSS is frequently invaded by several exotic plant species. This study used observations of foraging and cafeteria-style experiments to test for seed species selection by the harvester ant Pogonomyrmex rugosus Emery (Hymenoptera: Formicidae) in CSS. Analysis of foraging behavior showed that P. rugosus carried seeds of exotic Erodium cicutarium (L.) and exotic Brassica tournefortii (Gouan) on 85 and 15% of return trips to the nest (respectively), and only a very few ants carried the native seeds found within the study areas. When compared with the availability of seeds in the field, P. rugosus selected exotic E. cicutarium and avoided both native Encelia farinosa (Torrey & A. Gray) and exotic B. tournefortii. Foraging by P. rugosus had no major effect on the seed bank in the field. Cafeteria-style experiments confirmed that P. rugosus selected E. cicutarium over other available seeds. Native Eriogonum fasciculatum (Bentham) seeds were even less selected than E. farinosa and B. tournefortii.


Asunto(s)
Hormigas/fisiología , Especies Introducidas , Semillas , Animales , Brassica/crecimiento & desarrollo , California , Conducta Alimentaria/fisiología , Geraniaceae/crecimiento & desarrollo , Dispersión de Semillas
16.
Oecologia ; 181(3): 721-31, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27017604

RESUMEN

Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought.


Asunto(s)
Nitrógeno/farmacología , Estaciones del Año , Sequías , Ecosistema , Fotosíntesis , Hojas de la Planta , Árboles , Agua
17.
Mol Ecol ; 24(10): 2349-63, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25819510

RESUMEN

Achieving long-term persistence of species in urbanized landscapes requires characterizing population genetic structure to understand and manage the effects of anthropogenic disturbance on connectivity. Urbanization over the past century in coastal southern California has caused both precipitous loss of coastal sage scrub habitat and declines in populations of the cactus wren (Campylorhynchus brunneicapillus). Using 22 microsatellite loci, we found that remnant cactus wren aggregations in coastal southern California comprised 20 populations based on strict exact tests for population differentiation, and 12 genetic clusters with hierarchical Bayesian clustering analyses. Genetic structure patterns largely mirrored underlying habitat availability, with cluster and population boundaries coinciding with fragmentation caused primarily by urbanization. Using a habitat model we developed, we detected stronger associations between habitat-based distances and genetic distances than Euclidean geographic distance. Within populations, we detected a positive association between available local habitat and allelic richness and a negative association with relatedness. Isolation-by-distance patterns varied over the study area, which we attribute to temporal differences in anthropogenic landscape development. We also found that genetic bottleneck signals were associated with wildfire frequency. These results indicate that habitat fragmentation and alterations have reduced genetic connectivity and diversity of cactus wren populations in coastal southern California. Management efforts focused on improving connectivity among remaining populations may help to ensure population persistence.


Asunto(s)
Ecosistema , Variación Genética , Genética de Población , Pájaros Cantores/genética , Alelos , Animales , Teorema de Bayes , California , Análisis por Conglomerados , Conservación de los Recursos Naturales , Repeticiones de Microsatélite , Modelos Teóricos , Urbanización
18.
Oecologia ; 133(3): 315-324, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28466220

RESUMEN

From 1997 to 1999, we monitored the reproductive success of individual rufous-crowned sparrows (Aimophila ruficeps) in coastal sage scrub habitat of southern California, USA. Annual reproductive output of this ground-nesting species varied strongly with annual variation in rainfall, attributed to the El Niño-Southern Oscillation. Birds fledged 3.0 young per breeding pair in 1997, when rainfall was near the long-term mean, 5.1 offspring per pair in 1998, a wet El Niño year, and 0.8 fledglings per pair in 1999, a dry La Niña year. Variation in many components of reproductive output was consistent with the hypothesis that food availability was positively correlated with rainfall. However, the factor most responsible for the high reproductive output in 1998 was low early season nest predation which, combined with favorable nesting conditions, enabled more pairs to multiple-brood. Cool, rainy El Niño conditions may have altered the activity of snakes, the main predator of these nests, in the early season of 1998. Overall, more of the annual variation in fecundity was attributable to variation in within-season components of reproductive output (mean number of nests fledged per pair) than to within-nest components (mean brood size). Annual variation in rufous-crowned sparrow fecundity appears to be driven primarily by food resource-mediated processes in La Niña years and by predator-mediated processes in El Niño years.

19.
Oecologia ; 120(2): 304-310, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28308093

RESUMEN

The California gnatcatcher is a threatened species essentially restricted to coastal sage scrub habitat in southern California. Its distribution and population dynamics have been studied intensely, but little is known about its diet. We identified arthropod fragments in 33 fecal samples of the California gnatcatcher to gain insight into its foraging ecology and diet. Fecal samples were collected from adult males, adult females, fledglings, and nestlings. Leaf- and planthoppers (Homoptera) and spiders (Araneae) predominated numerically in samples. Spider prey was most diverse, with eight families represented. True bugs (Hemiptera) and wasps, bees, and ants (Hymenoptera) were only minor components of the gnatcatcher diet. Gnatcatcher adults selected prey to feed their young that was larger than expected given the distribution of arthropod size available in their environment, and chicks were provisioned with larger prey items and significantly more grasshoppers and crickets (Orthoptera) and spiders than adults consumed themselves. Both adults and young consumed more sessile than active prey. Further studies are needed to determine whether arthropods sampled in coastal sage scrub that are common in fecal samples are good indicators of California gnatcatcher habitat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA