Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Int J Biol Macromol ; : 135842, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306176

RESUMEN

Given the risks of poor patient compliance and bleeding associated with current dual antiplatelet therapies, it is urgent to develop the next generation of cardiovascular stents with anticoagulation and rapid endothelialization capabilities. Inspired by the prominent bioactivity and bioavailability of zeolitic imidazolate framework-90 (ZIF-90) in driving endothelial cell (EC) morphogenesis, this research proposes a "synergistic anticoagulant and endothelial regeneration strategy" depending on mussel-inspired phospholipid copolymer (MIPC) and ZIF-90. Depending on the copolymerization of the catechol with dopamine (Dopa) monomers, Dopa/MIPC coating was immobilized on the surface of CoCr via a one-pot process for resisting the initial thrombosis induced by platelets and fibrinogen. Meanwhile, ZIF-90 was loaded on the coating via coordination effect, aiming to accelerate the proliferation and migration of ECs. Compared with CoCr, the well-designed CoCr-Dopa/MIPC@ZIF-90 not only reduced fibrinogen adhesion by approximately 40 % and platelet adhesion by almost 55 %, but also promoted the proliferation and migration of ECs significantly in vitro. Furthermore, the blood flow velocity of CoCr-Dopa/MIPC@ZIF-90 stent was similar to natural aorta and ECs coverage on it was greatly strengthened after 30 days in a rat aorta vascular stent implantation model. Collectively, CoCr-Dopa/MIPC@ZIF-90 exhibited obvious superiority in reducing the formation of thrombus and promoting endothelial regeneration, which might meet the high requirement for the next generation of vascular stent.

2.
Materials (Basel) ; 17(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124323

RESUMEN

The cyclic oxidation behavior of an additive manufactured CoCrMo alloy with 0.14 wt.% C was investigated at 914 °C for 32 cycles, each lasting 10 h, resulting in a total exposure time of 320 h. The oxidation rate was assessed for mass gain after finishing each 40 h oxidation cycle. It was experimentally determined that the oxidative process at 914 °C of this CoCrMo alloy follows a parabolic law, with the process being fast at the beginning and slowing down after the first 40 h. The microstructural analysis revealed that in the as-printed state, the phases developed were primarily the γ matrix and minor traces of ε phase. The oxidative process ensured an increase in the ε phase and precipitation of carbides which produced a 12% increase in the material's hardness after the first 40 h of exposure at 914 °C. The oxidation process led to the development of an oxide scale comprising a dense Cr2O3 layer and a porous layer of CoCr2O4 spinel, the latter spalling after the 240 h of exposure. Despite this spallation, the oxide scale continued to develop in the presence of O, Cr, and Co. The experimental analysis provided valuable insights regarding the material's behavior under prolonged exposure at high temperature in air, demonstrating its suitability as a candidate for additive manufactured mandrels used for bending metallic pipe fitting elbows.

3.
J Prosthodont ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185809

RESUMEN

PURPOSE: To investigate the effects of the elemental composition and the manufacturing process of cobalt chromium-molybdenum (CoCr-Mo), cobalt chromium-tungsten (CoCr-W), and CoCr-Mo-W alloys on metal-ceramic bond strength. MATERIALS AND METHODS: Six CoCr-based alloys were included in this study, a were classified into three different groups depending on their elemental composition (Ν = 10, for each group). The first group had molybdenum (Mo) as the third alloying element, the second group contained tungsten (W) (without Mo), and the third group included both alloying elements. The groups were further divided by the manufacturing process (casting or selective laser melting, SLM). Interfacial analysis was carried out using backscattered electron imaging (BEI) and energy-dispersive X-ray microanalysis (EDX) operating in line scan mode. The metal-ceramic bond strength was tested by a 3-point bending test according to the ISO 9693 requirements. The fracture mode of all specimens was examined under a stereomicroscope. The bond strength results were statistically analyzed by 2-way ANOVA and Tukey's multiple comparison post hoc test (a = 0.05). RESULTS: A continuous interface with the porcelain was found without pores, debonding areas, or other defects. Of the major elements found at the interface, Co showed the highest diffusion rate, while titanium (Ti) had the lowest diffusion rate. No statistically significant differences were identified in metal-ceramic bond strength either among materials or between manufacturing processes. The fracture mode was found to be cohesive for all specimens. CONCLUSIONS: The metal-ceramic bond strength is independent of the current CoCr alloy type and manufacturing process when comparing conventional casting and SLM. Interfacial analysis revealed no differences between the tested groups.

4.
Sci Rep ; 14(1): 17027, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043857

RESUMEN

This study aims to compare the roughness between the central and edge points on the porcelain sectional surface of porcelain fused to Co-Cr alloy endocrowns. Utilizing anatomical data from average molar dimensions, a simplified model for the endocrowns was created. Eight porcelain fused to Co-Cr alloy endocrowns were fabricated with an edge thickness of 0.3 mm. Following casting, firing, cutting, and polishing procedures, the roughness on porcelain sectional surface at both the central and edge points of the inner crown was assessed using an atomic force microscope (AFM). The roughness measurement (Sq value) for the central point on porcelain sectional surface was (10.46 ± 3.37 nm), and for the edge point, it was (10.50 ± 1.99 nm). There was no statistically significant distinction between the central and edge points in terms of roughness. Despite the uneven thickness of the inner crown in porcelain fused to Co-Cr alloy endocrowns, it was observed that this disparity had negligible impact on the internal microstructure of the porcelain. Therefore, its application in dental clinical settings could be deemed viable.

5.
Saudi Dent J ; 36(6): 947-953, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883903

RESUMEN

This in vitro study aimed to evaluate the additive manufacturing (AM) of cobalt chromium Co-Cr and titanium Ti alloy clasps for clinical use. After scanning the Ni-Cr die of the first molar, Akers' clasps were designed using computer-aided design/ computer-aided manufacturing (CAD/CAM). The clasps were manufactured from Co-Cr-W dental alloy and Ti-6Al-4V alloy powder using AM machines. Then, they were divided into two groups. The initial retentive force of the clasps was measured using a universal testing machine. Cyclic loading of the clasps was carried out by a specially designed insertion-removal testing apparatus in wet condition up to 5000 cycles. Retentive force was measured at 1000, 2000, 3000, 4000, and 5000 cycles. Moreover, the intaglio surface of each clasp was scanned using the scanner; and superimposition between the pre- and post-cycling clasp files was performed to evaluate deformation after cyclic loading. The fitting surfaces of retentive clasp tips were examined with a scanning electron microscope (SEM). Finally, it has been found that the initial retentive force for the Co-Cr group was 10.81 ± 0.37 N, and for the Ti group was 5.41 ± 0.18 N. Additionally, during the testing periods, both Co-Cr and Ti clasps continued to lose retentive force within the cycles of placement and removal. This effect was more prominent in the Co-Cr than in the Ti clasps. The distances between pre- and post-cycling in the retentive arm were -0.290 ± 0.11 mm and -0.004 ± 0.01 mm in Co-Cr and Ti alloys, respectively, and in the reciprocal arm were -0.072 ± 0.04 mm and -0.032 ± 0.04 mm in Co-Cr and Ti alloys, respectively. The retentive force required to remove the Ti clasps was found to be significantly lower than those required to dislodge the Co-Cr clasps. Co-Cr and Ti clasps lost significant amounts of retentive force from the initial use to the 3.5-year periods of simulated clinical use.

6.
J Biomed Mater Res A ; 112(11): 1941-1959, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38775427

RESUMEN

In this work, a sequential covalent immobilization of graphene oxide (GO) and hyaluronic acid (HA) is performed to obtain a biocompatible wear-resistant nanocoating on the surface of the biomedical grade cobalt-chrome (CoCr) alloy. Nanocoated CoCr surfaces were characterized by Raman spectroscopy and electrochemical impedance spectroscopy (EIS) in 3 g/L HA electrolyte. Tribocorrosion tests of the nanocoated CoCr surfaces were carried out in a pin on flat tribometer. The biological response of covalently HA/GO biofunctionalized CoCr surfaces with and without wear-corrosion processes was studied through the analysis of the proteome of macrophages. Raman spectra revealed characteristic bands of GO and HA on the functionalized CoCr surfaces. The electrochemical response by EIS showed a stable and protective behavior over 23 days in the simulated biological environment. HA/GO covalently immobilized on CoCr alloy is able to protect the surface and reduce the wear volume released under tribocorrosion tests. Unsupervised classification analysis of the macrophage proteome via hierarchical clustering and principal component analysis (PCA) revealed that the covalent functionalization on CoCr enhances the macrophage biocompatibility in vitro. On the other hand, disruption of the HA/GO nanocoating by tribocorrosion processes induced a macrophage proteome which was differently clustered and was distantly located in the PCA space. In addition, tribocorrosion induced an increase in the percentage of upregulated and downregulated proteins in the macrophage proteome, revealing that disruption of the covalent nanocoating impacts the macrophage proteome. Although macrophage inflammation induced by tribocorrosion of HA/GO/CoCr surfaces is observed, it is ameliorated by the covalently grafting of HA, which provides immunomodulation by eliciting downregulations in characteristic pro-inflammatory signaling involved in inflammation and aseptic loosening of CoCr joint arthroplasties. Covalent HA/GO nanocoating on CoCr provides potential applications for in vivo joint prostheses led a reduced metal-induced inflammation and degradation by wear-corrosion.


Asunto(s)
Aleaciones de Cromo , Grafito , Ácido Hialurónico , Macrófagos , Grafito/química , Ácido Hialurónico/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Animales , Ratones , Corrosión , Aleaciones de Cromo/química , Proteómica , Células RAW 264.7 , Proteoma , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología
7.
Heliyon ; 10(5): e27204, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463834

RESUMEN

In total knee arthroplasty (TKA), the mechanical mismatch between cobalt-chromium (CoCr) alloy tibial implant and bone has been implicated in stress shielding and subsequent implant failure and bone resorption. This study investigates the biomechanical advantages of poly-ether-ether-ketone (PEEK) tibial implant, which exhibit properties analogous to those of the surrounding bone. A finite element analysis (FEA) was employed to assess and compare the biomechanical performances of PEEK and CoCr tibial implants in patients with and without osteoporosis. Four FEA models were constructed with PEEK and CoCr alloy implants in normal and osteoporotic tibias. Based on previous literature and our clinical experience, stresses measurements were taken at 16 points on the tibial plateau and 8 points on the two surfaces which were 10 mm and 20 mm apart from the tibial plateau, with specific regions quantified for stress shielding. The results showed significant differences in stress distribution between PEEK and CoCr implants. The PEEK implants exhibited higher equivalent stresses on the tibial plateau in all models (normal bone: 0.22 ± 0.07 MPa vs. 0.13 ± 0.06 MPa, p < 0.01; osteoporotic bone: 0.39 ± 0.06 MPa vs. 0.17 ± 0.07 MPa, p < 0.01). In non-osteoporotic models, the mean equivalent stresses on proximal tibial surfaces were similarly elevated for PEEK implants (0.29 ± 0.13 MPa vs. 0.21 ± 0.08 MPa, p = 0.02). The CoCr implants demonstrated more stress shielding across all measured regions (tibial plateau: 23.47% vs. 2.73%; surface 1: 15.93% vs. 1.37%; surface 2: 10.71% vs. 6.56%). These disparities were even more pronounced in osteoporotic models in the CoCr group (tibial plateau: 32.50% vs. 8.36%). The maximum equivalent stresses on the tibial plateau further supported this trend (normal bone: 1.02 MPa vs. 0.52 MPa; osteoporotic bone: 1.43 MPa vs. 0.67 MPa). These data confirm the hypothesis that a PEEK tibial implant can reduce peri-prosthetic stress shielding, suggesting that PEEK implants have the capability to distribute loads more uniformly and maintain a closer approximation to physiological conditions.

8.
J Prosthodont ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520400

RESUMEN

PURPOSE: Evaluation of the strain transmitted to the abutments and residual ridge by polyetherketoneketone material compared to the cobalt-chromium one in distal extension removable partial dentures (RPDs) to fulfill the objective of preservation of the supporting structures. MATERIALS AND METHODS: A virtual model simulating a Kennedy class I partially edentulous mandibular arch was designed. Two models, one for each group, were printed. Five RPDs were made in each group. In group CR, the framework was milled from a cobalt-chromium alloy. While in group PK, it was milled from a polyetherketoneketone blank. Strain gauge rosettes were bonded distal to the last abutment and posteriorly in the distal end of the residual ridge. Unilateral vertical and oblique loadings were applied. Mann-Whitney U test was used for inter-group comparisons while the Friedman test was used for intra-group comparisons and corrected by Wilcoxon Signed-Rank Sum. The significance level was set at p ≤ 0.05. RESULTS: During unilateral vertical load application, a statistically significant difference was found between both groups distal to the abutment in the loaded and unloaded sides as well as the residual ridge on the unloaded side. During oblique load application, a statistically significant difference was found between both groups in all slots. CONCLUSION: Polyetherketoneketone material induces less stress on the abutments and more stress on the residual ridges compared to the cobalt-chromium ones. Therefore, it may be recommended for weak abutments supporting RPDs.

9.
Environ Sci Pollut Res Int ; 31(18): 26773-26789, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456975

RESUMEN

In this study, CoCr layered double hydroxide material (CoCr-LDH) was prepared and used as an effective catalyst for peroxymonosulfate (PMS) activation to degrade organics in water. The prepared CoCr-LDH material had a crystalline structure and relatively porous structure, as determined by various surface analyses. In Rhodamine B (RhB) removal, the most outstanding PMS activation ability belongs to the material with a Co:Cr molar ratio of 2:1. The removal of RhB follows pseudo-first-order kinetics (R2 > 0.99) with an activation energy of 38.23 kJ/mol and efficiency of 98% after 7 min of treatment, and the total organic carbon of the solution reduced 47.2% after 10 min. The activation and oxidation mechanisms were proposed and the RhB degradation pathways were suggested with the key contribution of O2•- and 1O2. Notably, CoCr-LDH can activate PMS over a wide pH range of 4 - 9, and apply to a wide range of organic pollutants and aqueous environments. The material has high stability and good recovery, which can be reused for 5 cycles with a stable efficiency of above 88%, suggesting a high potential for practical recalcitrant water treatment via PMS activation by heterogeneous catalysts.


Asunto(s)
Peróxidos , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Peróxidos/química , Purificación del Agua/métodos , Rodaminas/química , Cinética , Oxidación-Reducción , Catálisis
10.
Saudi Dent J ; 36(2): 296-300, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38419985

RESUMEN

Objectives: This study aimed to evaluate the effect of multiple baking cycles of porcelain on its shear bond strength to a cobalt-chromium (Co-Cr) alloy that is three-dimensionally printed using Selective Laser Melting (SLM) technique. Materials and methods: The research sample comprised forty-eight discs measuring 5 mm × 3 mm, divided into four groups according to: the manufacturing method (SLM, casting) and the number of porcelain baking cycles (1, 3) as follows: Group A: Co-Cr alloy by SLM with one baking cycle; Group B: Co-Cr alloy by SLM with three baking cycles; Group C: Ni-Cr alloy by casting with one baking cycle; Group D: Ni-Cr alloy by casting with three baking cycles. Then, porcelain was melted on disks, shear testing was performed and the values of the Shear Bond Strength (SBS) in MegaPascals (MPa) were calculated. Results: The mean SBS values for each group were (A: 25.69 - B: 19.51 - C: 35.72 - D: 28.67 MPa). Statistical analysis showed that the manufacturing method and the number of porcelain baking cycles had a significant influence on shear bond durability (P > 0.05): the strength of this bond decreased when baking cycles increased. The Co-Cr samples manufactured by SLM also showed a decrease in binding strength compared to the Ni-Cr samples made by casting. Conclusion: Repeated baking of porcelain reduces the strength of the porcelain bond with the Co-Cr alloy made by Selective Laser Melting (SLM) technique.

11.
Chemosphere ; 352: 141215, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253085

RESUMEN

The use of chemical materials to tackle environmental concerns has undergone significant evolution, particularly in the pursuit of strategies for removing pollutants from wastewater as part of environmental remediation an increasingly crucial research topic. Employing green photocatalysts stands out as an efficient and cost-effective approach, playing a key role in promoting sustainable environmental remediation. This study introduces the modification of zinc oxide with cobalt chromite (CoCr2O4/ZnO) through a green synthesis method employing Basella alba L. leaves extract (BALE). Utilizing various characterization techniques, including FT-IR, UV-Vis DRS, XRD, SEM-EDS, and TEM, key features of ZnO, CoCr2O4, and CoCr2O4/ZnO nanocomposites were identified. The optical band gaps for ZnO, CoCr2O4, and CoCr2O4/ZnO nanocomposites were determined as 3.16, 1.71, and 2.80 eV, respectively, where it was shown that the band gap of the ZnO was reduced significantly. CoCr2O4/ZnO nanocomposites displayed a cubic shape of CoCr2O4 on the surface of ZnO, with a particle size of 23.84 ± 8.08 nm. The photocatalytic activity was assessed through the degradation of malachite green under visible light irradiation, where the CoCr2O4/ZnO nanocomposites exhibited superior photodegradation efficiency at 90.91%, surpassing ZnO alone (57.09%). This improvement in photocatalytic activity is attributed to a reduced band gap energy and a high rate constant value of 9.57 × 10-3 min-1, demonstrating pseudo-first-order reaction kinetics. In summary, this research presents the development of a ZnO-based photocatalyst with exceptional performance, especially in the visible light spectrum, making it a promising candidate for applications in wastewater removal.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Óxido de Zinc/química , Aguas Residuales , Espectroscopía Infrarroja por Transformada de Fourier , Colorantes de Rosanilina , Nanocompuestos/química , Agua , Catálisis
12.
J Biomed Mater Res B Appl Biomater ; 112(1): e35367, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38247250

RESUMEN

Biomedical alloys, like many engineering alloys, have chemical or physical heterogeneities at the surface, and such heterogeneities can potentially act as sites for pit initiation. Alloys of particular interest are 316/316L (and 316LVM) stainless steel, nitinol, and CoCr alloys. This review focuses on the sites-generally inclusions-that have been associated with pitting in various studies of biomedical alloys in simulated physiological solutions. The effect of these sites is discussed in relation to factors such as type and size. For both 316/316L stainless steel and nitinol, pitting has been found to initiate at two different types of inclusions: sulfide and oxide inclusions in stainless steel, and carbide and oxide inclusions in nitinol. Sulfide inclusions tend to be the predominant sites for pitting on 316/316L stainless steel, while there is some evidence to suggest that carbide inclusions may be more effective than oxide inclusions for pitting on nitinol. CoCrMo alloys differ from the other two alloys in that, although particles can be present in the form of carbides, the carbides typically do not provide sites for pit initiation except possibly for alloys with a high-C content, certain heat treatments, and when anodically polarized to high potentials. CoNiCrMo differs further in that TiN inclusions can be present in the vicinity of pits and might be associated with them, but irrespective of the initiation site, any pits are unlikely to grow because of repassivation.


Asunto(s)
Aleaciones , Acero Inoxidable , Óxidos , Sulfuros
13.
Eur J Orthop Surg Traumatol ; 34(1): 251-269, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37439887

RESUMEN

AIM: Polymers and metals, such as polyethylene (PE) and cobalt chrome (CoCr), are common materials used in thumb-based joint implants, also known as CMC (Carpometacarpal) arthroplasty. The purpose of this review was to investigate the reported failure modes related to wear debris from these type of materials in CMC implants. The impact of wear debris on clinical outcomes of CMC implants was also examined. Potential adverse wear conditions and inflammatory particle characteristics were also considered. METHOD: A literature search was performed using PRISMA guidelines and 55 studies were reviewed including 49 cohort studies and 6 case studies. Of the 55 studies, 38/55 (69%) focused on metal-on-polyethylene devices, followed by metal-on-metal (35%), and metal-on-bone (4%). RESULTS: The summarized data was used to determine the frequency of failure modes potentially related to wear debris from metals and/or polymers. The most commonly reported incidents potentially relating to debris were implant loosening (7.1%), osteolysis (1.2%) and metallosis (0.6%). Interestingly the reported mechanisms behind osteolysis and loosening greatly varied. Inflammatory reactions, while rare, were generally attributed to metallic debris from metal-on-metal devices. Mechanisms of adverse wear conditions included implant malpositioning, over-tensioning, high loading for active patients, third-body debris, and polyethylene wear-through. No specific examination of debris particle characterization was found, pointing to a gap in the literature. CONCLUSION: This review underscores the types of failure modes associated with wear debris in CMC implants. It was found that failure rates and adverse wear conditions of CMC implants of any design are low and the exact relationship between wear debris and implant incidences, such as osteolysis and loosening remains uncertain. The authors note that further research and specific characterization is required to understand the relationship between debris and implant failure.


Asunto(s)
Osteólisis , Humanos , Osteólisis/etiología , Pulgar/cirugía , Prótesis e Implantes/efectos adversos , Polietileno , Artroplastia/efectos adversos , Metales , Falla de Prótesis
14.
Artículo en Inglés | MEDLINE | ID: mdl-37946349

RESUMEN

Approximately 50% of the adult global population is projected to suffer from some form of metabolic disease by 2050, including metabolic syndrome and diabetes mellitus. At the same time, this trend indicates a potential increase in the number of patients who will be in need of implant-supported reconstructions of specific bone regions subjected to inflammatory states. Moreover, physiological conditions associated with dysmetabolic subjects have been suggested to contribute to the severity of bone loss after bone implant insertion. However, there is a perspective evidence strengthening the hypothesis that custom-fabricated bioengineered scaffolds may produce favorable bone healing effects in case of altered endocrine or metabolic conditions. This perspective review aims to share a comprehensive knowledge of the mechanisms implicated in bone resorption and remodelling processes, which have driven researchers to develop metallic implants as the cobalt-chromium (Co-Cr) bioscaffolds, presenting optimized geometries that interact in an effective way with the osteogenetic precursor cells, especially in the cases of perturbed endocrine or metabolic conditions.

15.
Polymers (Basel) ; 15(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37836055

RESUMEN

With the aim of promoting the qualities for total hip joint replacement, the wettability and tribological behaviors of PEEK composites pins with two sets of different fillers (PEEK/CF or PEEK/CF/PTFE/graphite) against Co-Cr alloy discs with five categories of surface textures (polished, orthogonal, spiral, r-θ, and orthogonal combined with spiral) were explored. It is revealed that the existence of CF in PEEK matrix increases the hydrophilicity in addition to the strength of PEEK, while the addition of PTFE increases the hydrophobicity of PEEK. The Co-Cr alloy discs with hydrophilic properties can be adjusted as hydrophobic, with the depth of textured grooves exceeding the critical sag height determined by the contact angle and the groove width. It can be concluded that PEEK/CF/PTFE/graphite composite has a lower wear rate than PEEK only reinforced with CF against Co-Cr alloy, both without surface texture and with shallow or deep grooves. The existence of shallow grooves on the disc surface could help the PEEK blends to achieve a steady friction against Co-Cr alloy in addition to collecting the worn debris. PEEK blend pins with 10 vol% CF, 10 vol% PTFE and 10 vol% graphite can achieve a lower friction coefficient of no more than 0.2 against Co-Cr alloy discs with shallow grooves around 3.5 µm in orthogonal or spiral textures.

16.
J Prosthodont ; 32(8): 714-720, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37664889

RESUMEN

PURPOSE: The aim of this study was to evaluate the impact of the print orientation of direct metal laser sintering (DMLS) posts and cores on the fracture resistance and failure patterns of endodontically treated mandibular premolar teeth. MATERIALS AND METHODS: Sixty intact human mandibular premolars were endodontically treated. The teeth were then randomly divided into four groups (n = 15). Cobalt-chromium (Co-Cr) metal posts were fabricated by traditional casting (Group C), and DMLS method in 0-, 45-, and 90-degree print orientations (Group DMLS 0, Group DMLS 45, and Group DMLS 90). The posts and cores were cemented with composite resin cement and subjected to compression test at a crosshead speed of 1 mm/min. Data was analyzed by using one-way analysis of variance ANOVA and multiple comparison post hoc Tukey tests (α = 0.05). Specimens were viewed under a stereo microscope with x20 magnification to evaluate the fracture types. RESULTS: No significant differences were found among the groups tested in terms of fracture resistance (p > 0.05). Group C and Group DMLS 0 group exhibited similar fracture patterns. CONCLUSIONS: It is possible to produce post and core restorations with the DMLS technique and use them clinically.  Print orientation did not influence the fracture resistance. However, fracture patterns were different. Group C outperformed all DMLS groups in terms of fracture patterns.

17.
Dent Mater J ; 42(5): 748-755, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37612058

RESUMEN

We aimed to elucidate the effects of ultraviolet (UV) irradiation on the shear bond strength (SBS) between heat-cured polymethyl methacrylate (PMMA) and a Co-Cr-Mo alloy. Disk-shaped Co-Cr-Mo alloy prepared by casting were subjected to different UV treatment times (0, 15, and 30 min). To determine the effect of UV treatment on surface properties of the alloy, surface roughness, wettability, and chemical compositions were analyzed. To evaluate the SBS, cylindrical PMMA was bonded to the UV-treated alloy, and subsequently subjected to the SBS test after 24 h of storage at room temperature or following 10,000 thermal cycles (n=10/group). After the UV treatment, the surface roughness remained unchanged, but oxidation resulted in the surface exhibiting greater hydrophilic characteristics. The UV-treated group showed significantly higher SBS values than those of the non-treated group (p<0.001). These results suggested that UV treatment-mediated oxidation improved the bond strength between PMMA and Co-Cr-Mo alloy.

18.
Materials (Basel) ; 16(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37629896

RESUMEN

Due to the high stiffness of the biomaterials used in total knee arthroplasty, stress shielding can lead to decreased periprosthetic bone mineral density and bone resorption. As different materials and 3D-printed highly porous surfaces are available for knee femoral components from the industry nowadays, this study aimed to compare the effects of two same-design cruciate-retaining femoral components, made with CoCr and titanium alloy, respectively, on periprosthetic bone stresses through a finite element model of the implanted knee in order to evaluate the induced stress shielding. Moreover, the effect of the cementless highly porous surface of the titanium implant was analyzed in comparison to the cemented interface of the CoCr implant. The von Mises stresses were analyzed in different periprosthetic regions of interest of the femur with different configurations and knee flexion angles. The titanium component induced higher bone stresses in comparison with the CoCr component, mostly in the medial compartment at higher knee flexion angles; therefore, the CoCr component led to more stress shielding. The model was revealed to be effective in describing the effects of different femoral component materials on bone stress, highlighting how a cementless, highly porous titanium femoral component might lead to less stress shielding in comparison to a cemented CoCr implant with significant clinical relevance and reduced bone resorption after total knee arthroplasty.

19.
Materials (Basel) ; 16(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37297329

RESUMEN

Dental implants are thought to be implanted for life, but throughout their lifespan, they function in aggressive oral environment, resulting in corrosion of the material itself as well as possible inflammation of adjacent tissues. Therefore, materials and oral products for people with metallic intraoral appliances must be chosen carefully. The purpose of this study was to investigate the corrosion behavior of common titanium and cobalt-chromium alloys in interaction with various dry mouth products using electrochemical impedance spectroscopy (EIS). The study showed that different dry mouth products lead to different open circuit potentials, corrosion voltages, and currents. The corrosion potentials of Ti64 and CoCr ranged from -0.3 to 0 V and -0.67 to 0.7 V, respectively. In contrast to titanium, pitting corrosion was observed for the cobalt-chromium alloy, leading to the release of Co and Cr ions. Based on the results, it can be argued that the commercially available dry mouth remedies are more favorable for dental alloys in terms of corrosion compared to Fusayama Meyer's artificial saliva. Thus, to prevent undesirable interactions, the individual characteristics of not only the composition of each patient's tooth and jaw structure, but also the materials already used in their oral cavity and oral hygiene products, must be taken into account.

20.
J Contemp Dent Pract ; 24(3): 188-194, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272131

RESUMEN

AIM: The aim of the present study is to investigate the metal-ceramic bond strength as a result of three different surface treatment methods: (1) oxidation, (2) oxidation and sandblasting, and (3) double oxidation on the metal substrate. MATERIALS AND METHODS: A total of 72 metal substrates were made from two different types of metal-ceramic alloys (n = 36): group I, Ni-Cr and group II, Co-Cr alloys. Each group was further divided and subjected to three different surface treatments (n = 12): (1) oxidation in accordance with the manufacturer's instructions; (2) oxidation according to the manufacturer's instructions and then sandblasting with Al2O3, with a grain size of 110 µm, a pressure of 75 psi for 10 sec with a distance of 5 cm and steam cleaning; and (3) double oxidation. The bond strength of the specimens was evaluated with the three-point bending process. The data were recorded, tabulated, and statistically analyzed. RESULTS: For group I, the materials with oxidation based on the specifications, show mean value of 64.02 Nt. The oxidation and sandblasting materials have mean 55.92 Nt. The double oxidation materials have mean 55.47. For group II, the materials with oxidation based on the specifications, show mean value of 58.46 Nt. The oxidation and sandblasting materials have a mean value of 42.56 Nt. The double oxidation materials have mean 42.96 Nt. CONCLUSION: The best method of treatment of the metal substrate is specification oxidation, in terms of the strength of the metal-ceramic bond. Further treatment of the metal substrate reduces the strength of the metal-ceramic bond. CLINICAL SIGNIFICANCE: A prerequisite for clinical success of metal-ceramic prosthetic restorations is the increased strength of the bond between ceramic material and metal substrate. With that in mind, the present research gives important insight into best practices for prosthetic restorations.


Asunto(s)
Aleaciones de Cromo , Recubrimiento Dental Adhesivo , Aleaciones de Cromo/química , Propiedades de Superficie , Cerámica , Aleaciones de Cerámica y Metal/química , Ensayo de Materiales , Porcelana Dental/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA