Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.051
Filtrar
1.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003065

RESUMEN

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Asunto(s)
Antibacterianos , Ganado , Estiércol , Microbiología del Suelo , Animales , Suelo/química , Secuestro de Carbono , Carbono/metabolismo , Fósforo , Reciclaje , Contaminantes del Suelo/metabolismo , Bovinos , Porcinos , Nitrógeno/análisis , Oxitetraciclina
2.
Int J Gen Med ; 17: 3813-3824, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246805

RESUMEN

Objective: To develop an early warning system that enables accurate parametrial invasion (PMI) risk prediction in cervical cancer patients with early-stage. Methods: We retrospectively collected 218 early-stage cervical cancer patients who were treated in Jingzhou Central Hospital from January 31, 2015, to January 31, 2023, and diagnosed with early stage cervical cancer by pathology. The prediction model training is achieved by randomly dividing 70% of the training queue population, with the remaining 30% used as the testing queue. Then, a prediction model based on machine learning algorithms (including random forest, generalized linear regression, decision tree, support vector machine, and artificial neural network) is constructed to predict the risk of PMI occurrence. Ultimately, the analysis of receiver operating characteristic curve (ROC) and decision curve analysis (DCA) is used to evaluate the predictive ability of various prediction models. Results: We finally included radiomics-based candidate variables that can be used for PMI model. Multivariate logistic regression analysis showed that energy, correlation, sum entropy (SUE), entropy, mean sum (MES), variance of differences (DIV), and inverse difference (IND) were independent risk factors for PMI occurrence. The predictive performance AUC of five types of machine learning ranges from 0.747 to 0.895 in the training set and can also reach a high accuracy of 0.905 in the testing set, indicating that the predictive model has ideal robustness. Conclusion: Our ML-based model incorporating GLCM parameters can predict PMI in cervical cancer patients with stage IB1 to IIA2, particularly the RFM, which could contribute to distinguishing PMI before surgery, especially in assisting decision-making on surgical scope.

3.
Front Microbiol ; 15: 1448919, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234542

RESUMEN

Microorganisms in lakes are sensitive to salinity fluctuations. Despite extensive prior research on bacterial communities, our understanding of their characteristics and assembly mechanisms in lakes, especially in desert lakes with different salinities. To address this issue, we collected three samples from freshwater lakes, six from brackish lakes, and five from salt lakes in the Badanjilin Desert. The 16S rRNA gene sequencing was applied to investigate the bacterial interactions with rising salinity, community coexistence patterns, and assembly mechanisms. Our findings suggested that the increased lake salinity significantly reduces the bacterial community diversity and enhanced the community differentiation. Significant variations were observed in the contribution of biomarkers from Cyanobacteria, Chloroflexi, and Halobacterota to the composition of the lake bacterial communities. The bacterial communities in the salt lakes exhibited a higher susceptibility to salinity limitations than those in the freshwater and brackish lakes. In addition, the null modeling analyses confirmed the quantitative biases in the stochastic assembly processes of bacterial communities across freshwater, brackish, and saline lakes. With the increasing lake salinity, the significance of undominated and diffusion limitation decreased slightly, and the influence of homogenizing dispersal on community assembly increased. However, the stochasticity remained the dominant process across all lakes in the Badanjilin Desert. The analysis of co-occurring networks revealed that the rising salinity reduced the complexity of bacterial network structures and altered the interspecific interactions, resulting in the increased interspecies collaboration with increasing salinity levels. Under the influence of salinity stress, the key taxon Cyanobacteria in freshwater lakes (Schizothrix_LEGE_07164) was replaced by Proteobacteria (Thalassobaculum and Polycyclovorans) in brackish lakes, and Thermotogota (SC103) in salt lakes. The results indicated the symbiotic patterns of bacterial communities across varying salinity gradients in lakes and offer insights into potential mechanisms of community aggregation, thereby enhancing our understanding of bacterial distribution in response to salinity changes.

4.
Environ Pollut ; 361: 124884, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236841

RESUMEN

River ecosystems currently face a significant threat of degradation and loss of biodiversity resulting from continuous emissions of persistent organic pollutants and human activities. In this study, multi-trophic communities were assessed using DNA metabarcoding in a relatively stable riverine sediment compartment to investigate the biodiversity dynamics in the Beiluo River, followed by an evaluation of their response to polycyclic aromatic hydrocarbons (PAHs) and land use changes. A total of 48 bacterial phyla, 4 fungal phyla, 4 protist phyla, 9 algal phyla, 31 metazoan phyla, and 12 orders of fish were identified. The total concentration of PAHs in the Beiluo River sediments ranged from 25.95 to 1141.35 ng/g, with low molecular weight PAHs constituting the highest proportion (68.67%), followed by medium (22.19%) and high (9.14%) molecular weight PAHs. Notably, in contrast to lower trophic level aquatic communities such as bacteria, algae, and metazoans, PAHs exhibited a significant inhibitory effect on fish. Furthermore, the diversity of aquatic communities displayed obvious heterogeneity across distinct land use groups. A high proportion of cultivated land reduced the biodiversity of fish communities but increased that of metazoans. Conversely, an elevated proportion of built-up land reduced metazoan biodiversity, while simultaneously enhancing that of fungi and bacteria. Generally, land use changes exert both indirect and direct effects on aquatic communities. The direct effects primarily influence the abundance of aquatic communities rather than their diversity. Nevertheless, PAHs pollution may have limited potential to disrupt community structures through complex species interactions, as the hub species identified in the co-occurrence network did not align with those significantly affected by PAHs. This study indicates the potential of PAHs and land use changes to cause biodiversity losses. However, it also highlights the possibility of mitigating these negative effects in riverine sediments through optimal land use management and the promotion of enhanced species interactions.

5.
Sci Rep ; 14(1): 21291, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266574

RESUMEN

Fritillaria cirrhosa, an endangered medicinal plant in the Qinghai-Tibet Plateau, is facing resource scarcity. Artificial cultivation has been employed to address this issue, but problems related to continuous cultivation hinder successful transplantation. Imbalanced microbial communities are considered a potential cause, yet the overall changes in the microbial community under continuous cropping systems remain poorly understood. Here, we investigated the effects of varying durations of continuous cropping on the bacterial and fungal communities, as well as enzymatic activities, in the rhizospheric soil of F. cirrhosa. Our findings revealed that continuous cropping of F. cirrhosa resulted in soil acidification, nutrient imbalances, and increased enzyme activity. Specifically, after 10 years of continuous cropping, there was a notable shift in the abundance and diversity (e.g., Chao1 index) of soil bacteria and fungi. Moreover, microbial composition analyses revealed a significant accumulation of harmful microorganisms associated with soil-borne diseases (e.g., Luteimonas, Parastagonospora, Pseudogymnoascus) in successively cropped soils, in contrast to the significant reduction of beneficial microorganisms (e.g., Sphingomonas, Lysobacter, Cladosporium) that promote plant growth and development and protect against diseases such as Fusarium sp.These changes led to decreased connectivity and stability within the soil microbial community. Structural equation modeling and redundancy analysis revealed that alkaline hydrolytic nitrogen and available phosphorus directly influenced soil pH, which was identified as the primary driver of soil microbial community changes and subsequently contributed to soil health deterioration. Overall, our results highlight that soil acidification and imbalanced rhizosphere microbial communities are the primary challenges associated with continuous cropping of F. cirrhosa. These findings establish a theoretical foundation for standardized cultivation practices of F. cirrhosa and the bioremediation of continuously cultivated soils.


Asunto(s)
Bacterias , Fritillaria , Hongos , Microbiología del Suelo , Fritillaria/crecimiento & desarrollo , Fritillaria/microbiología , Tibet , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Suelo/química , Rizosfera , Microbiota , Micobioma
6.
Environ Res ; 262(Pt 2): 119946, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276837

RESUMEN

Chromium (Cr) contamination can adversely affect soil ecology, yet our knowledge of how fungi respond to Cr contamination at heavily contaminated field sites remains relatively limited. This study employed high-throughput sequencing technology to analyze fungal community characteristics in soils with varying Cr concentrations. The results showed that Cr contamination significantly influenced soil fungi's relative abundance and structure. Mantel test analysis identified hexavalent chromium (Cr(VI)) as the primary factor affecting the structure of the soil fungal community. In addition, FUNGuild functional prediction analysis exhibited that Cr contamination reduced the relative abundance of Pathotroph and Symbiotroph trophic types. High concentrations of Cr may lead to a drop in the relative abundance of Animal Pathogens. Molecular ecological network analysis showed that Cr contamination increased interactions among soil fungi, thereby enhancing the stability and complexity of the network. Within these networks, specific keystone taxa, such as the genus Phanerochaete, exhibited properties capable of removing or reducing the toxicity of heavy metals. Our studies suggest that Cr contamination can alter indigenous fungal communities in soil systems, potentially impacting soil ecosystem function.

7.
J Environ Manage ; 370: 122485, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278018

RESUMEN

Despite the rapid development of research on aquatic environment microbiota, limited attention has been paid to exploring the complex interactions between microbial communities and aquatic environments. Particularly, the mechanisms underlying fish diseases based on such dynamic interactions remain unknown. This study aimed to address the gap by conducting microbiome and co-occurrence network analyses on the typical freshwater aquaculture systems. High-throughput 16S rRNA gene sequencing results revealed significant differences in the microbiota between the disease and healthy groups. Notably, disease mortality varied consistently with the gradient of relative abundance of Proteobacteria (intestine, R2 = 0.46, p < 0.05) and Cyanobacteria (gill, R2 = 0.67, p < 0.01), indicating their potential use as diagnostic criteria. Furthermore, the elevated hepatosomatic index, NO3-N, COD and TC (sediment) were directly correlated with diseases (r > 0.54, p < 0.01). Mean concentrations of NO3-N, COD and TC were elevated by 78.87%, 25.63% and 44.2%, respectively, in ponds where diseases occurred. Quantitative analysis (qPCR) revealed that Aeromonas sobria infected hosts through a potential pathway of "sediment (4.4 × 105 copy number/g)-water (1.1 × 103 copy number/mL)-intestine (1.2 × 106 copy number/g)". Similarly, the potential route for Aeromonas veronii was sediment (4.9 × 106 copy number/g) to gill (5.1 × 105 copy number/g). Additionally, the complexity of microbial networks in the intestine, water, and sediment was significantly lower in the disease group, although no similar phenomenon was observed in the gill microbial network. In summary, these findings reveal that elevated concentrations of crucial environmental factors disrupt the linkages within microbiota, fostering the growth of opportunistic bacteria capable of colonizing fish gut or gills. This offers new insights into potential mechanisms by which environmental factors cause disease in fish.

8.
Clin Genet ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289831

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) and congenital heart disease (CHD) are the most common congenital defects and constitute a major cause of morbidity in children. Anomalies of both systems may be isolated or associated with congenital anomalies of other organ systems. Various reports support the co-occurrence of CAKUT and CHD, although the prevalence can vary. Cardiovascular anomalies occur in 11.2% to 34% of patients with CAKUT, and CAKUT occur in 5.3% to 35.8% of those with CHD. The co-occurrence of genetic factors in both CAKUT and CHD would raise common etiologies including genetics, genetic-environmental interactions, or shared molecular mechanisms and pathways such as NODAL, NOTCH, BMP, WNT, and VEGF. Studies in animal models and humans have indicated a genetic etiology for CHD and CAKUT with hundreds of genes recognized and thousands of entries, found in a catalog of human genetic disorders. There are over 80 CAKUT genes and over 100 CHD genes available for clinical testing. For example, the HNFIB gene accounts for 5% to 31% of reported cases of CAKUT. In view of the association between CAKUT and CHD, a thorough cardiac examination should be performed in patients with CAKUT, and a similar evaluation for CAKUT in the presence of CHD. This will allow early diagnosis and therapeutic intervention to improve the long- term outcome of patients affected, and test for at-risk family members. We present here evidence for an association of anomalies involving the two organ systems, and discuss possible etiologies of targeted genes, their functions, biological processes and interactions on embryogenesis.

9.
Environ Res ; 263(Pt 1): 119947, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276827

RESUMEN

Eutrophication is a critical environmental challenge affecting lakes globally. Mitigating trophic level under endogenous phosphorus release is an unsolved problem in eutrophic lakes. However, understanding the dynamics and assembly of microbial communities encoding the alkaline phosphatase (phoD community) and their responses during trophic transitions in eutrophic lakes is limited. In this study, we compared the composition and assembly mechanisms of phoD communities in four seasons in the Yilong Lake, a shallow lake of the Yunnan-Guizhou Plateau. The lake exhibits slightly eutrophic conditions in summer and mesotrophic conditions in spring, autumn, and winter. By analyzing seasonal variations, we observed that during summer, the relative abundance of Pseudomonas in the water had the highest value, while the Shannon-Wiener index of phoD communities was lowest. Mantel tests showed an increased Bray-Curtis dissimilarity of phoD communities in the water with rising eutrophication, a trend not observed in sediment. Notably, eutrophication heightened the homogeneity selection governing the assembly of phoD communities in water. The co-occurrence networks showed that the OTUs in the summer exhibited closer interconnections than those in other seasons. Additionally, the topological parameters from networks indicated that eutrophication is poised to instigate changes and modulate the dynamics of the microbial phoD community, resulting in markedly distinct seasonal behaviors. pH was identified as a critical factor directly influencing phoD community diversity via partial least squares path modeling (PLS-PM). This study shed light on our understanding of the seasonal dynamics of phoD communities and their pivotal role in phosphorus cycling in eutrophic lakes.

10.
Front Plant Sci ; 15: 1440951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39297014

RESUMEN

Introduction: The Grain for Green Project (GGP) by the Chinese government was an important vegetation restoration project in ecologically fragile and severely degraded karst regions. Soil fungi play a facilitating role in the cycling of nutrients both above and below the ground, which is crucial for maintaining ecosystem function and stability. In karst regions, their role is particularly critical due to the unique geological and soil characteristics, as they mitigate soil erosion, enhance soil fertility, and promote vegetation growth. However, little is known about how the implementation of this project shifts the co-occurrence network topological features and assembly processes of karst soil fungi, which limits our further understanding of karst vegetation restoration. Methods: By using MiSeq high-throughput sequencing combined with null model analysis technology, we detected community diversity, composition, co-occurrence networks, and assembly mechanisms of soil fungi under three GGP patterns (crop, grassland, and plantation) in the southwestern karst region. Results: Ascomycota and Basidiomycota were the main fungal phyla in all the karst soils. Returning crop to plantation and grassland had no significant effect on α diversity of soil fungi (P > 0.05), but did significantly affect the ß diversity (P = 0.001). Soil moisture and total nitrogen (TN) were the main factors affecting the community structure of soil fungi. Compared with crop, soil fungi networks in grassland and plantation exhibited a higher nodes, edges, degree, and relatively larger network size, indicating that vegetation restoration enhanced fungal interactions. The soil fungi networks in grassland and plantation were more connected than those in crop, implying that the interaction between species was further strengthened after returning the crop to plantation and grassland. In addition, null-model analysis showed that the assembly process of soil fungal communities from crop to grassland and plantation shifted from an undominant process to dispersal limitation. Discussion: These data indicated that GGP in karst region changed the composition and assembly mechanisms of the soil fungal community and enhanced the interaction between fungal species, which can contribute to a better understanding of the fungal mechanisms involved in the restoration of degraded karst soils through vegetation recovery.

11.
Front Microbiol ; 15: 1445315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268529

RESUMEN

Plant tissues harbor abundant endophytes, which are crucial for plant growth. Endophytes present in Alsophila spinulosa, which is enriched with medicinal components, have not been isolated and characterized yet. Here we employed meta-amplicon sequencing to identify endophytic species and examined their diversity in the leaves, petioles, roots and stems of A. spinulosa. Our findings revealed 1,247 operational taxonomic units (OTUs) for endophytic bacteria across 210 species and 476 OTUs for endophytic fungi across 222 species. Alpha diversity analysis showed the highest endophytic bacterial diversity in A. spinulosa roots, whereas fungal diversity was similar across the leaf, petiole and root tissues. Fungal diversity in the leaves and petioles was markedly higher than that in the stems. Furthermore, beta diversity analysis revealed similarities in the endophytic bacterial and fungal compositions between the leaves and petioles, whereas the compositions in roots and stems considerably differed from those in the leaves and petioles. At the genus level, the predominant endophytic bacteria were Methylobacterium-Methylorubrum and Pseudomonas, whereas the predominant endophytic fungi were Cutaneotrichosporon and Pseudofabraea. Linear discriminant analysis effect size revealed characteristic endophytic bacterial genera specific to each tissue type and characteristic endophytic fungal genera specifically in the leaves, petioles and roots. The co-occurrence network analysis indicated that the complexity of endophyte networks was the highest in the leaves and the lowest in the stems of A. spinulosa. Overall, this study elucidates the distribution patterns of endophytes in A. spinulosa across various tissues, offering valuable microbial resources for the development of natural products for medicinal application.

12.
Front Microbiol ; 15: 1463665, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268539

RESUMEN

Mining disturbance has great impacts on soil physicochemical factors, causing notable differences between pre-mining and after-mining conditions, and between coal mining areas and non-mined areas. However, little is known about whether the fissure statuses induced by mining activities affect the edaphic factors and how soil microbial communities respond to these fissure development states. In this study, we systematically investigated the edaphic factors and microbial communities in a mining disturbance area exhibiting the full development status of soil fissures, where the sampling sites were divided into soil fissure development and closure zones. Microbial alpha-and beta-diversity, correlation coefficient matrix, non-metric multi-dimensional scaling, principal co-ordinates analysis, mantel test, and microbial co-occurrence network were employed to elucidate variations, correlations, and interactions between edaphic factors and microbial communities under the two different soil fissure states. Results suggested that soil physicochemical properties were significantly affected by fissure states, showing an increasing trend in soil moisture content and soil nutrients. The associations among edaphic factors have weakened during the soil fissure development process. Soil microbial communities showed different compositions and the underlying influential mechanisms between two soil fissure states. Soil moisture content, pH, particle compositions, organic matter, and heavy metals largely affected microbial communities. Rare species were vulnerable to mining disturbance and were keystone taxa that reinforced the overall interconnections of the soil microbial community (e.g., Nordella, Sphingomonas, Massilia, and Rubritepida). Our study revealed the impacts of distinct fissure states on the soil physicochemical properties and microbial communities, and the edaphic conditions showed key contributions to the soil microbial communities, particularly the abundance and ecological roles of rare species.

13.
Hematology ; 29(1): 2402106, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39268974

RESUMEN

BACKGROUND: Primary myelofibrosis (PMF) is the most advanced subtype among the classic Philadelphia chromosomenegative myeloproliferative neoplasms (MPNs). A majority of patients carry one of three mutually-exclusive somatic driver mutations: JAK2 (60-65%), CALR (20-25%), or MPL (5%). Co-occurrence of these mutations is rarely reported. Here we report a case with a triple positive combination of JAK2, CALR and MPL driver mutations. CASE PRESENTATION: A 69-year-old male was admitted to hospital for acute exacerbation of chronic obstructive pulmonary disease (COPD) and was found to have splenomegaly and leukocytosis. Nextgeneration revealed JAK2, CALR, MPL mutations, and additional variants in SF3B1, SRSF2, and STAG2. The patient was diagnosed with PMF and treated with ruxolitinib and COPD therapy. Due to nausea, the ruxolitinib dose was reduced. After therapy, spleen volume decreased and hematologic responses were poor. Another genetic mutation of ASXL1 was later found. After adjusting the medication and adding antiemetics, the patient's condition improved. CONCLUSIONS: The rare coexistence of JAK2, CALR, and MPL mutations challenges the assumption of their mutual exclusivity. Further study of these mutations is essential for developing better treatment strategies.


Asunto(s)
Calreticulina , Janus Quinasa 2 , Mutación , Mielofibrosis Primaria , Receptores de Trombopoyetina , Humanos , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/tratamiento farmacológico , Masculino , Anciano , Janus Quinasa 2/genética , Calreticulina/genética , Receptores de Trombopoyetina/genética
14.
Environ Geochem Health ; 46(10): 413, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230730

RESUMEN

The restoration of mining wastelands, particularly in karst regions contaminated by heavy metals, is an environmental challenge in need of urgent attention. Soil microbes play a vital role in nutrient cycling and ecosystem recovery, yet the long-term evolution of soil microbial communities in such settings remains poorly understood. This study explored the dynamics and influencing factors of soil microbial communities during 35 years of natural restoration in abandoned manganese (Mn) mine areas in Guangxi Province, China. The results revealed that the concentrations of Mn, Cd, Zn, and Cu were significantly (p < 0.05) reduced by 80.4-85.3%, 55.3-70.0%, 21.0-38.1%, and 29.4-49.4%, respectively, in the mid-late restoration periods (R19 and R35) compared with R1. The α diversities of the bacterial and fungal communities significantly increased in the middle-late restoration periods (R19 and R35), indicating increased microbial diversity as restoration progressed. The bacterial community structure exhibited more pronounced changes than did the fungal community structure, with significant shifts observed in dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteriota, and Ascomycota. Notably, the relative abundances of Rhizobiales, Burkholderiales, and Hypocreales increased gradually with succession. Co-occurrence network analysis revealed that bacterial interactions became stronger over time, whereas interactions between bacteria and fungi weakened. Mantel tests and partial least squares path modeling (PLS‒PM) identified soil pH, heavy metals (Mn, Cd, Zn, and Cu), and nutrients (SOM and TN) as key drivers shaping the microbial community composition. These factors were more strongly correlated with bacterial communities than with fungal communities, underscoring the different responses of microbial groups to environmental changes during natural restoration. These findings enhance our understanding of the ecological processes governing microbial community succession in heavy metal-contaminated soils undergoing natural restoration.


Asunto(s)
Bacterias , Hongos , Manganeso , Metales Pesados , Minería , Microbiología del Suelo , Contaminantes del Suelo , China , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Bacterias/metabolismo , Bacterias/clasificación , Restauración y Remediación Ambiental/métodos , Microbiota
15.
Neurol Sci ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230834

RESUMEN

INTRODUCTION: Multiple sclerosis (MS) is a chronic, disabling neurodegenerative disease, leads to reduced quality of life. The increasing prevalence of MS around the world and its comorbidities increase its burden. Primary vasculitis subtypes, one of autoimmune diseases with different prevalence in different ages and genders, should be considered one of the important differential diagnosis in patients with MS. This study aims to verify the relationship between MS and primary vasculitis by conducting a systematic review. METHOD: We searched PubMed, Scopus, EMBASE, Web of Science, and Google Scholar, from January 1974 to July 2023. We included original articles that reported characteristics of patients involved with any type of Primary Vasculitis with MS. RESULT: From an initial 816 publications, 18 studies consisting of 18 individual patients from 14 countries with confirmed MS and one of different subtypes of primary vasculitis met the inclusion criteria. The female/male ratio was 0.38:1, the mean (SD) age was 40.44 (14.37) years with the range of 16 to 70 years old, and the relapsing/progressive ratio was 1.57:1. Most of them, 14 (77%) experienced MS before vasculitis, and mostly received Corticosteroids, interferon, cyclophosphamide, Glatiramer acetate as MS treatment. The concurrence of Takayasu Arteritis (2 cases), Polyarteritis Nodosa (2 cases), Churg-Strauss Syndrome (1 case), Wegener's Granulomatosis (2 cases), Microscopic Polyangiitis (1 case), Cutaneous leukocytoclastic vasculitis (5 cases), Good pasture's disease (5 cases) were reported with MS. CONCLUSION: Our study suggested that different primary vasculitis can be an important comorbidity of MS and can mimic its symptoms and MRI. Any atypical syndrome for PwMS, whether clinical or radiological, must be evaluated in terms of other differential diagnoses including vasculitis.

16.
Environ Microbiome ; 19(1): 65, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223675

RESUMEN

In nature, microbes do not thrive in seclusion but are involved in complex interactions within- and between-microbial kingdoms. Among these, symbiotic associations with mycorrhizal fungi and nitrogen-fixing bacteria are namely known to improve plant health, while providing resources to benefit other microbial members. Yet, it is not clear how these microbial symbionts interact with each other or how they impact the microbiota network architecture. We used an extensive co-occurrence network analysis, including rhizosphere and roots samples from six plant species in a natural desert in AlUla region (Kingdom of Saudi Arabia) and described how these symbionts were structured within the plant microbiota network. We found that the plant species was a significant driver of its microbiota composition and also of the specificity of its interactions in networks at the microbial taxa level. Despite this specificity, a motif was conserved across all networks, i.e., mycorrhizal fungi highly covaried with other mycorrhizal fungi, especially in plant roots-this pattern is known as assortativity. This structural property might reflect their ecological niche preference or their ability to opportunistically colonize roots of plant species considered non symbiotic e.g., H. salicornicum, an Amaranthaceae. Furthermore, these results are consistent with previous findings regarding the architecture of the gut microbiome network, where a high level of assortativity at the level of bacterial and fungal orders was also identified, suggesting the existence of general rules of microbiome assembly. Otherwise, the bacterial symbionts Rhizobiales and Frankiales covaried with other bacterial and fungal members, and were highly structural to the intra- and inter-kingdom networks. Our extensive co-occurrence network analysis of plant microbiota and study of symbiont assortativity, provided further evidence on the importance of bacterial and fungal symbionts in structuring the global plant microbiota network.

17.
Heliyon ; 10(15): e35239, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39161838

RESUMEN

Heart failure (HF) is an increasingly prevalent disease in humans; it induces multiple symptoms and damages health. The animal gut microbiota has critical roles in host health, which might be related to HF symptoms. Currently, several options are used to treat HF, including non-invasive ventilation (NIV). However, studies on gut microbiota responses to acute HF and associated treatments effects on gut communities in patients are scarce. Here, short-term (1 week after treatments) and long-term (3 months after treatment) variations in gut microbiota variations in rats with acute HF treated were examined NIV through high-throughput sequencing of the bacterial 16S rRNA gene. Through comparison of gut microbiota alpha diversity, it was observed lower gut microbiota richness and diversity in animals with acute HF than in normal animals. Additionally, beta-diversity analysis revealed significant alterations in the gut microbiota composition induced by acute HF, as reflected by increased Firmicutes/Bacteroidetes (F/B) ratios and Proteobacteria enrichment. When network analysis results were combined with the null model, decreased stability and elevated deterministic gut microbiota assemblies were observed in animals with acute HF. Importantly, in both short- and long-term periods, NIV was found to restore gut microbiota dysbiosis to normal states in acute HF rats. Finally, it was shown that considerable gut microbiota variations existed in rats with acute HF, that underlying microbiota mechanisms regulated these changes, and confirmed that NIV is suitable for HF treatment. In future studies, these findings should be validated with different model systems or clinical samples.

18.
BMC Bioinformatics ; 25(1): 266, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143554

RESUMEN

BACKGROUND: Construction of co-occurrence networks in metagenomic data often employs correlation to infer pairwise relationships between microbes. However, biological systems are complex and often display qualities non-linear in nature. Therefore, the reliance on correlation alone may overlook important relationships and fail to capture the full breadth of intricacies presented in underlying interaction networks. It is of interest to incorporate metrics that are not only robust in detecting linear relationships, but non-linear ones as well. RESULTS: In this paper, we explore the use of various mutual information (MI) estimation approaches for quantifying pairwise relationships in biological data and compare their performances against two traditional measures-Pearson's correlation coefficient, r, and Spearman's rank correlation coefficient, ρ. Metrics are tested on both simulated data designed to mimic pairwise relationships that may be found in ecological systems and real data from a previous study on C. diff infection. The results demonstrate that, in the case of asymmetric relationships, mutual information estimators can provide better detection ability than Pearson's or Spearman's correlation coefficients. Specifically, we find that these estimators have elevated performances in the detection of exploitative relationships, demonstrating the potential benefit of including them in future metagenomic studies. CONCLUSIONS: Mutual information (MI) can uncover complex pairwise relationships in biological data that may be missed by traditional measures of association. The inclusion of such relationships when constructing co-occurrence networks can result in a more comprehensive analysis than the use of correlation alone.


Asunto(s)
Metagenómica , Metagenómica/métodos , Algoritmos , Metagenoma/genética
19.
Front Microbiol ; 15: 1422534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149207

RESUMEN

Soil microorganisms play a crucial role in the plant invasion process, acting as both drivers of and responders to plant invasion. However, the effects of plant invasion on the complexity and stability of co-occurrence networks of soil microbial communities remain unclear. Here, we investigated how the invasion of Spartina alterniflora affected the diversity, composition, and co-occurrence networks of soil bacterial and fungal communities in the Yellow River Delta, China. Compared to the native plant (Suaeda salsa), S. alterniflora invasion decreased the α-diversity of soil bacterial communities but did not affect that of fungal communities. The ß-diversity of soil bacterial and fungal communities under S. salsa and S. alterniflora habitats also differed dramatically. S. alterniflora invasion increased the relative abundance of the copiotrophic phylum Bacteroidota, whereas decreased the relative abundances of the oligotrophic phyla Acidobacteriota and Gemmatimonadota. Additionally, the relative abundance of Chytridiomycota, known for its role in degrading recalcitrant organic matter, increased substantially within the soil fungal community. Functional predictions revealed that S. alterniflora invasion increased the relative abundance of certain soil bacteria involved in carbon and nitrogen cycling, including aerobic chemoheterotrophy, nitrate reduction, and nitrate respiration. More importantly, S. alterniflora invasion reduced the complexity and stability of both soil bacterial and fungal community networks. The shifts in soil microbial community structure and diversity were mainly induced by soil available nutrients and soil salinity. Overall, our study highlights the profound impacts of S. alterniflora invasion on soil microbial communities, which could further indicate the modification of ecosystem functioning by invasive species.

20.
Front Psychol ; 15: 1352337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149704

RESUMEN

The current study used a person-centered approach to explore the co-occurrence of college students' achievement emotions. It also examined the impact of teacher support on achievement emotion profiles and the mediating effect of need satisfaction. A total of 866 college students participated in the survey. A robust three-step latent profile analysis was employed to analyze the data. Four profiles of achievement emotions were identified: moderate mixed emotions, the blends of high positive emotions, the blends of moderate positive emotions, and high mixed emotions. Higher perceived teacher support was associated with a greater likelihood of being classified into the blends of moderate positive emotion profile or the blends of high positive emotion profile. Moreover, basic psychological need satisfaction mediated the relationship between teacher support and the four emotion profiles. Our findings contribute to a more comprehensive understanding of the role of teacher support in shaping achievement emotion profiles, helping to broaden the application of self-determination theory to explain the mechanism by which external support influences emotion profiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA