Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 368: 122186, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39168004

RESUMEN

The widespread presence and distribution of metal-based nanoparticles (NPs) in soil is threatening crop growth and food security. However, little is known about the fate of Co3O4 NPs in the soil-soybean system and their phytotoxicity. The study demonstrated the effects of Co3O4 NPs on soybean growth and yield in soil after 60 days and 140 days, and compared them with the phytotoxic effects of Co2+. The results showed that Co3O4 NPs (10-500 mg/kg) had no significant toxic effect on soybeans. Soil available Co content was significantly increased under 500 mg/kg Co3O4 NPs treatment. Compared with Co2+, Co3O4 NPs mainly accumulated in roots and had limited transport to the shoots, which was related to the particle size, surface charge and chemical stability of Co3O4 NPs. The significant accumulation of Co3O4 NPs in roots further led to a significant decrease in root antioxidant enzyme activity and changes in functional gene expression. Co3O4 NPs reduced soybean yield after 140 days, but interestingly, at specific doses, it increased grain nutrients (Fe content increased by 17.38% at 100 mg/kg, soluble protein and vitamin E increased by 14.34% and 16.81% at 10 mg/kg). Target hazard quotient (THQ) assessment results showed that consuming soybean seeds exposed to Co3O4 NPs (≥100 mg/kg) and Co2+ (≥10 mg/kg) would pose potential health risks. Generally, Co3O4 NPs could exist stably in the environment and had lower environmental risks than Co2+. These results help to better understand the environmental behavior and plant effect mechanisms of Co3O4 NPs in soil-plant systems.


Asunto(s)
Glycine max , Contaminantes del Suelo , Suelo , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Suelo/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/química , Nanopartículas/toxicidad , Nanopartículas/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Cobalto/toxicidad , Cobalto/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Óxidos
2.
Micromachines (Basel) ; 15(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542661

RESUMEN

The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge-discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high.

3.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38398949

RESUMEN

D-penicillamine (D-PA) is a sulfur-containing drug that has been used for various health conditions. However, like any medication, overdosing on D-PA can have adverse effects and may require additional treatment. Therefore, developing simple and sensitive methods for sensing D-PA can play a crucial role in improving its efficacy and reducing its side effects. Sensing technologies, such as electrochemical sensors, can enable accurate and real-time measurement of D-PA concentrations. In this work, we developed a novel electrochemical sensor for detecting D-PA by modifying a carbon paste electrode (CPE) with a multi-walled carbon nanotube-Co3O4 nanocomposite, benzoyl-ferrocene (BF), and ionic liquid (IL) (MWCNT-Co3O4/BF/ILCPE). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CHA) were employed to explore the electrochemical response of D-PA on the developed sensor, the results of which verified a commendable electrochemical performance towards D-PA. Under optimized conditions, the developed sensor demonstrated a rapid response to D-PA with a linear dynamic range of 0.05 µM-100.0 µM, a low detection limit of 0.015 µM, and a considerable sensitivity of 0.179 µA µM-1. Also, the repeatability, stability, and reproducibility of the MWCNT-Co3O4/BF/ILCPE sensor were studied and showed good characteristics. In addition, the detection of D-PA in pharmaceutical and biological matrices yielded satisfactory recoveries and relative standard deviation (RSD) values.

4.
Heliyon ; 9(11): e21994, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034639

RESUMEN

Three types of Co3O4 catalyst, namely Co3O4 nanoparticles (denoted as Co3O4-NPs, ∼12 nm in diameter), Co3O4 nanoparticles encapsulated in mesoporou s SiO2 (denoted as Co3O4@SiO2), and Co3O4 nanoparticles inside microporous SiO2 hollow sub-microspheres (denoted as Co3O4-in-SiO2), were explored to catalyze the combustion of lean methane. It was found that the methane conversion over the three catalysts has the order of Co3O4-NPs ≈ Co3O4@SiO2 > Co3O4-in-SiO2 due to the different catalyst structure. The comparison experiments at high temperatures indicate the Co3O4@SiO2 has a significantly improved anti-sintering performance. Combined with the TEM and BET measurements, the results prove that the presence of the mesoporous SiO2 layer can maintain the catalytical activity and significantly improve the anti-sintering performance of Co3O4@SiO2. In contrast, the microporous SiO2 layer reduces the catalytical activity of Co3O4-in-SiO2 possibly due to its less effective diffusion path of combustion product. Thus, the paper demonstrates the pore size of SiO2 layer and catalyst structure are both crucial for the catalytical activity and stability.

5.
J Colloid Interface Sci ; 649: 832-843, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37390531

RESUMEN

The sluggish reaction kinetics and unfavorable shuttling effect are regarded as obstacles to the practical application of lithium-sulfur (Li-S) batteries. To resolve these inherent drawbacks, we synthesized novel multifunctional Co3O4@NHCP/CNT as the cathode materials consisting of carbon nanotubes (CNTs)-grafted N-doped hollow carbon polyhedrons (NHCP) embedded with cobalt (II, III) oxide (Co3O4) nanoparticles. The results indicate that the NHCP and interconnected CNTs could provide favorable channels for electron/ion transport and physically restrict the diffusion of lithium polysulfides (LiPSs). Furthermore, N doping and in-situ Co3O4 embedding could endow the carbon matrix with strong chemisorption and effective electrocatalytic activity toward LiPSs, thus prominently promoting the sulfur redox reaction. Benefiting from these synergistic effects, the Co3O4@NHCP/CNT electrode exhibits a high initial capacity of 1322.1 mAh/g at 0.1 C, and a capacity retention of 710.4 mAh/g after 500 cycles at 1 C. Impressively, even at a relatively high current density of 4 C, the Co3O4@NHCP/CNT electrode achieves a high capacity of 653.4 mAh/g and outstanding long-term cycle stability for 1000 cycles with a low decay rate of 0.035% per cycle. Hence, the design of N-doped CNTs-grafted hollow carbon polyhedrons coupled with transition metal oxides would provide effective promising perspective for developing high-performance Li-S batteries.

6.
Chemosphere ; 317: 137922, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682638

RESUMEN

In this study, co-precipitation synthesis of natural clay (NC) with Co3O4 nanoparticles (NPs) is carried out to elaborate the super NC@Co3O4 nanocomposites with admirable salinity confrontation, environmental stability and reusability, to eliminate heavy metal pollution such as toxic Pb(II) and Cd(II) ions. The advantages of using the NC@Co3O4 adsorbent are easy synthesis and biocompatibility. In addition, NC@Co3O4 can keep an excellent adsorption capacity by taking into account various environmental parameters such as the pH solution, NC@Co3O4 dose, adsorption process time and the initial heavy metals concentration. Furthermore, FTIR, XRD, TGA, SEM-EDS, TEM and AFM analyses were performed to confirm NC@Co3O4 nanocomposites synthesis and characterisation. The adsorption efficiencies of Pb(II) and Cd(II) ions by NC@Co3O4 nanocomposites were demonstrated to be up to 86.89% and 82.06% respectively. Regarding the adsorption from water onto the NC@Co3O4 nanocomposites, kinetics data were well fitted with PSO kinetic model, whereas a good agreement was found between the equilibrium adsorption and theoretical Langmuir isotherm model leading to maximum adsorption capacities of 55.24 and 52.91 mg/g, for Pb(II) and Cd(II) respectively. Monte Carlo (MC) simulations confirmed the spontaneous of this adsorption based on the negative values of Eads. The MC simulations were performed to highlight the interactions occurring between heavy metal ions and the surface of NC@Co3O4 nanocomposites, these were well correlated with the experimental results. Overall the study showed that NC@Co3O4 nanoadsorbents have strongly versatile applications and are well designed for pollutant removal from wastewater due to their unique adsorptive properties.


Asunto(s)
Metales Pesados , Nanocompuestos , Contaminantes Químicos del Agua , Cadmio/análisis , Plomo , Metales Pesados/análisis , Óxidos , Agua/química , Nanocompuestos/química , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno
7.
Molecules ; 27(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500254

RESUMEN

In this study, rosemary leaf extract was effectively used to synthesize cobalt oxide nanoparticles (Co3O4 NPs) using a rapid, low-cost, and environmentally friendly approach. The prepared Co3O4 NPs were examined using various analytical techniques. However, UV spectrum analysis displayed two sharp absorption peaks at ~350 and 745 nm. The dynamic light scattering and zeta potential measurements were used to evaluate the particle size and the effective stabilization of the synthetic nanoparticles in the suspensions. A semi-triangular pyramidal shape of the Co3O4 NPs with a wide particle-size distribution could be observed in the scanning electron microscopy images. The energy-dispersive X-ray spectrum confirmed their successful synthesis, as the experimental atomic percentages agreed with the theoretical values. Moreover, X-ray diffraction analysis revealed that the synthesized Co3O4 NPs had a cubic crystalline structure corroborating that of theoretical Co3O4. Additionally, the Co3O4 NPs were not toxic at ≤62.5 µg/mL for Hep G2 and at ≤31.25 µg/mL for Mcf7. Therefore, these unique environmentally friendly Co3O4 NPs at this safe concentration could be studied in the future for their therapeutic activity.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Cobalto/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Difracción de Rayos X , Antibacterianos/química
8.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36500743

RESUMEN

The green, sustainable, and inexpensive creation of novel materials, primarily nanoparticles, with effective energy-storing properties, is key to addressing both the rising demand for energy storage and the mounting environmental concerns throughout the world. Here, an orange peel extract is used to make cobalt oxide nanoparticles from cobalt nitrate hexahydrate. The orange peel extract has Citrus reticulata, which is a key biological component that acts as a ligand and a reducing agent during the formation of nanoparticles. Additionally, the same nanoparticles were also obtained from various precursors for phase and electrochemical behavior comparisons. The prepared Co-nanoparticles were also sulfurized and phosphorized to enhance the electrochemical properties. The synthesized samples were characterized using scanning electron microscopic and X-ray diffraction techniques. The cobalt oxide nanoparticle showed a specific capacitance of 90 F/g at 1 A/g, whereas the cobalt sulfide and phosphide samples delivered an improved specific capacitance of 98 F/g and 185 F/g at 1 A/g. The phosphide-based nanoparticles offer more than 85% capacitance retention after 5000 cycles. This study offers a green strategy to prepare nanostructured materials for energy applications.

9.
Materials (Basel) ; 15(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35591463

RESUMEN

CoO/Co3O4 nanoparticles (CoO/Co3O4 NPs) were synthesized with egg white. The effectiveness of CoO/Co3O4 NPs to inhibit the corrosion of carbon steel has verified in acidic medium (1 M HCl). It has been found that Langmuir adsorption isotherm is the dominant adsorption process of CoO/Co3O4 NPs on the surface of low-carbon steel. The thermodynamic parameters also demonstrated that the adsorption process of CoO/Co3O4 NPs was a physicochemical, spontaneous, and exothermic process. The electrochemical impedance spectroscopy technique and potentiodynamic polarization were applied. The results obtained in this study showed that CoO/Co3O4 NPs acted as a mixed inhibitor for the anodic reaction and the cathodic reaction, and the efficiency to inhibit the corrosion was 93% at 80 ppm of the inhibitor. The results of scanning electron microscopy (SEM) technique, energy-dispersive X-ray spectroscopy (EDS), and X-ray electron spectroscopy (XPS) confirmed the effectiveness that was obtained using the inhibitor to protect the surface of low carbon steel. Thus, low-carbon steel can be protected against corrosion in acidic medium using CoO/Co3O4 NPs as inhibitors.

10.
Nanotechnology ; 33(14)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34823231

RESUMEN

The poor electronic conductivity and low intrinsic electrocatalytic activity of metal organic frameworks (MOFs) greatly limit their direct application in electrocatalytic reactions. Herein, we report a conductive two-dimensionalπ-dconjugated Ni and Co bimetal organic framework (MOF)-NiCo-(2,3,6,7,10,11-hexaiminotriphenylene) (NiCo-HITP) nanorods decorated with highly dispersed Co3O4nanoparticles (NPs) as a promising bi-functional electrocatalyst towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) through an effective and facile strategy by modifying the rod-shaped -Ni3HITP2crystals using cobalt ions. The triggered electrocatalytic activity of the resulting MOF-based materials was achieved by increasing the electrical conductivity (7.23 S cm-1) originated from Ni3HITP2substrate and also by creating the cooperative catalysis sites of Co-Nxand Co3O4NPs. Optimized syntheses show a promising ORR activity with a high half-wave potential (0.77 V) and also a significantly improved OER activity compared with pure Ni3HITP2in alkaline electrolyte. Furthermore, a rechargeable Zn-air battery using the as-prepared material as air-cathode also shows a high power density (143.1 mW cm-2)-even comparable to a commercial Pt/C-RuO2-based battery. This methodology offers a new prospect in the design and synthesis of non-carbonized MOF bi-functional electrocatalysts for efficient catalysis towards ORR and OER.

11.
Environ Sci Pollut Res Int ; 28(39): 54802-54810, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34013415

RESUMEN

The exposure-effect study was conducted to evaluate the effect of Co3O4 nanoparticles on Tetraselmis suecica. The growth suppressing effect has been observed during the interaction between nanoparticles and microalgae as indicated by 72 h EC50 (effective concentration of a chemical at which 50% of its effect is observed) value (45.13±3.95 mg/L) of Co3O4 nanoparticles for Tetraselmis suecica. Decline in chlorophyll a content also indicated the compromised photosynthetic ability and physiological state of microalgae. Further biochemical investigation such as increase in extracellular LDH (lactate dehydrogenase) level, ROS (reactive oxygen species), and levels of membrane lipid peroxidation in treated samples signifies the compromised cellular health and membrane disintegration caused by nanoparticles. Parallel to this, the cell entrapment, membrane damage, and attachment of nanoparticles on cell surface were also visualized by SEM-EDX (scanning electron microscope-energy dispersive X-ray) microscopy. The overall results of this study clearly indicated that Co3O4 nanoparticles might have toxic effects on growth of marine microalgae and other aquatic life forms as well. Hence, release of Co3O4 nanoparticles in aquatic ecosystem and resulting ecotoxic effect should be broadly addressed.


Asunto(s)
Microalgas , Nanopartículas , Clorofila A , Ecosistema , Microscopía , Nanopartículas/toxicidad
12.
Chem Asian J ; 16(13): 1820-1831, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34014032

RESUMEN

In this investigation, a melamine electrochemical sensor has been developed by using wet-chemically synthesized low-dimensional aggregated nanoparticles (NPs) of ZnO-doped Co3 O4 as sensing substrate that were decorated onto flat glassy carbon electrode (GCE). The characterization of NPs such as UV-Vis, FTIR, XRD, XPS, EDS, and FESEM was done for detailed investigations in optical, functional, structural, elemental, and morphological analyses. The ZnO-doped Co3 O4 NPs decorated GCE was used as a sensing probe to analyze the target chemical melamine in a phosphate buffer at pH 5.7 by applying differential pulse voltammetry (DPV). It exhibited good performances in terms of sensor analytical parameters such as large linear dynamic range (LDR; 0.15-1.35 mM) of melamine detection, high sensitivity (80.6 µA mM-1 cm-2 ), low limit of detection (LOD; 0.118±0.005 mM), low limit of quantification (LOQ; 0.393 mM), and fast response time (30 s). Besides this, the good reproducibility (in several hours) and repeatability were investigated under identical conditions. Moreover, it was implemented to measure the long-time stability, electron mobility, less charge-transfer resistance, and analyzed diffusion-controlled process for the oxidation reaction of the NPs assembled working GCE electrode, which showed outstanding chemical sensor performances. For validation, real environmental samples were collected from various water sources and investigated successfully with regard to the reliability of the selective melamine detection with prepared NPs coated sensor probe. Therefore, this approach might be introduced as an alternative route in the sensor technology to detect selectively unsafe chemicals by an electrochemical method with nanostructure-doped materials for the safety of environmental, ecological, healthcare fields in a broad scale.


Asunto(s)
Carbono/química , Cobalto/química , Nanopartículas del Metal/química , Óxidos/química , Triazinas/química , Agua/química , Óxido de Zinc/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Monitoreo del Ambiente , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/química
13.
J Colloid Interface Sci ; 597: 1-8, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33862443

RESUMEN

A novel N-doped graphene-like carbon nanosheets (CNs) and carbon nanotubes (CNTs)-encapsulated Co-Co3O4 nanoparticles (NPs) (CN@Co-Co3O4/CNTs) were synthesized successfully by a simple hydrothermal and annealing method with graphite carbon nitride (g-C3N4) as self-template. By annealing Co2+/g-C3N4 under N2 atmosphere, g-C3N4 was transformed into CN/CNTs, and Co2+ was reduced into CoNPs which were embedded in CNs. Further annealing in air, a shell of Co3O4 was formed around CoNPs. The amount of CNs, CNTs, and CoNPs can be adjusted by changing the ratio of Co2+ in Co2+/g-C3N4. The graphene-like CNs provided a large number of active sites and a large specific surface area for loading lots of small CoNPs uniformly. The CNTs with a diameter of 100 nm could not only improve the conductivity but also provide a buffer space for the aggregation and volume expansion of Co3O4. CNTs also enlarged the interlayer distance of CNs, which prevented the re-stacking of CNs and provided great convince for the intercalation and de-intercalation of Li+. When applied for anode material of lithium-ion batteries, CN@Co-Co3O4/CNTs exhibited a high discharge capacity of 460.0 mAh g-1 at 5000 mA g-1 after 300 cycles with a Coulombic efficiency of 98% and excellent higher-rate capacity (401.0 mAh g-1 at 2000 mA g-1 and 329.0 mAh g-1 at 5000 mA g-1).

14.
Mikrochim Acta ; 188(5): 166, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33876310

RESUMEN

A sensitive photoelectrochemical (PEC) sensor based on hexagonal carbon nitride tubes (HCNT) as photoactive material was prepared for the detection of human epidermal growth factor receptor 2 (HER2). Magnetic Fe3O4 nanospheres (MNs) modified with anti-HER2 antibodies were employed for highly efficient capture of HER2 from serum sample, and Co3O4 nanoparticles (Co3O4 NPs) modified with ascorbic acid oxidase (AAO) as well as HER2 aptamer were used for signal amplification. When the aptamer-Co3O4-AAO probe was captured onto the electrode surface through the specific binding of the aptamer with HER2, the photocurrent intensity decreased. This was because Co3O4 NPs competed with HCNT for consumption of the excitation energy. As a consequence AAO catalyzed the oxidation of the electron donor (AA), and the aptamer-Co3O4-AAO probe increased the steric hindrance at the electrode surface, leading to significant photocurrent intensity decrease, thus realizing multiple signal amplification. Based on this signal amplification strategy, at 0 V (vs Ag/AgCl), the PEC sensor shows a wide linear response ranging from 1 pg mL-1 to 1 ng mL-1 with a low detection limit of 0.026 pg mL-1 for HER2. Importantly, the prepared PEC sensor was applied for detection of HER2 in human serum samples with recoveries between 98.8 and 101%. Sensitive photoelectrochemical sensor based on Co3O4 nanoparticles modified with ascorbic acid oxidase for signal amplification is reported.


Asunto(s)
Ascorbato Oxidasa/química , Cobalto/química , Técnicas Electroquímicas/métodos , Óxidos/química , Receptor ErbB-2/sangre , Anticuerpos Inmovilizados/inmunología , Aptámeros de Nucleótidos/química , Ácido Ascórbico/química , Técnicas Biosensibles/métodos , Enzimas Inmovilizadas/química , Humanos , Separación Inmunomagnética , Límite de Detección , Nanopartículas de Magnetita/química , Nanocompuestos/química , Procesos Fotoquímicos , Receptor ErbB-2/química , Receptor ErbB-2/inmunología , Reproducibilidad de los Resultados
15.
J Colloid Interface Sci ; 596: 130-138, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33839347

RESUMEN

Lithium-ion hybrid capacitors (LICs) have gained increasing focus owing to their high energy/power densities. The development of anodes with superior rate capability is an effective way to surmount the kinetic mismatch between anodes and cathodes, and thus, enhancing the energy/power densities. Herein, Co3O4 nanoparticles embedded in three-dimensionally (3D) ordered macro-/mesoporous TiO2 (Co3O4@TiO2) are synthesized through an in situ method from dual templates. Differing from the composite prepared by loading active nanoparticles on support, Co3O4 nanoparticles are embedded in TiO2 framework, which can improve the stability of the electrode. Furthermore, the hierarchically porous structure of TiO2 is in favor of the rapid diffusion of ions and electrolyte. As a result, The Co3O4@TiO2-2 composite with an optimized Co3O4 content (~25 wt%) delivers a high capacity of 944.1 mAh g-1 after 100 cycles at 0.1 A g-1 and high-rate capability (405.7 mAh g-1 after 1000 cycles at 5 A g-1). The LIC assembled with Co3O4@TiO2-2 anode and activated carbon (AC) cathode delivers high energy/power densities (maximum, 87.9 Wh kg-1/10208.9 W kg-1) and great cycle stability (88.1%, 6000 cycles, 0.5 A g-1).

16.
Chemosphere ; 274: 129799, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33545593

RESUMEN

Strive to develop the interaction and efficient co-catalysts is one of the vital projects in realizing hybrid photocatalytic systems for water remediation. In this work, p-type porous Co3O4 was embedded onto n-type vertical TiO2 nanotube via an in-situ thermal etching method. ZIF-67 was employed as the structural template for Co3O4, which then augmented the light harvesting ability of the resultant photocatalyst. Such improvement was prompted by the light reflecting and directing attributes of porous Co3O4. Therefore, a remarkable MB removal rate was attained under sunlight irradiation, with superoxide radical being identified as the major reactive species. Photoelectric properties evaluation also verified that the p-n heterojunction developed herein exhibits outstanding charges separation ability with low impedance, particularly under light irradiation. This work highlights the idea on coupling both porous and p-n heterojunction engineering in augmenting photoactivity of catalyst, while offering insights in such structure-mediating approach.


Asunto(s)
Nanotubos , Agua , Porosidad , Titanio
17.
Anal Chim Acta ; 1125: 299-307, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32674777

RESUMEN

As a broad-spectrum tetracycline antibiotic, the overuse of oxytetracycline (OTC) causes antibiotics residues in the environment and seriously threats to human health owing to effective antibacterial properties. Thus, it is particularly important to design a photoelectrochemical (PEC) aptasensor to detect OTC with excellent performance. Herein, we developed a selective and stable PEC aptasensor of OTC on the basis of Co3O4 nanoparticles (Co3O4 NPs)/graphitic carbon nitride (g-CN) heterojunction, used as PEC active materials. The Co3O4 NPs were successfully grown on the g-CN via grinding and calcining mixture of Co3O4 precursors and bulk g-CN. The Co3O4/g-CN heterojunction with improved light utilization and promoted electrons/holes separation capability can exhibit higher PEC signal than that of g-CN. In order to implement the purpose of specific recognition, OTC-aptamer was introduced into modified electrode to construct highly selective PEC aptasensor for OTC determination, which can possess wide linear range (0.01-500 nM) with low detection limit (3.5 pM, S/N = 3). This PEC aptasensor platform with excellent selectivity and high stability can provide a practical application in the field of water monitoring.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Oxitetraciclina/análisis , Fotoquímica/métodos , Secuencia de Bases , Cobalto/química , Cobalto/efectos de la radiación , Grafito/química , Grafito/efectos de la radiación , Luz , Límite de Detección , Nanopartículas del Metal/efectos de la radiación , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/efectos de la radiación , Óxidos/química , Óxidos/efectos de la radiación , Oxitetraciclina/química , Reproducibilidad de los Resultados , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
18.
ACS Appl Mater Interfaces ; 12(21): 24102-24111, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32352278

RESUMEN

Although various bio-inspired materials with outstanding mechanical, acoustic, and optic properties have been developed, bio-inspired materials for microwave absorption applications are rarely reported. Herein, under the inspiration of the opal structure, for the first time, a kind of Co@Co3O4/nitrogen-doped (N-doped) mesoporous carbon sphere (Co@Co3O4/NMCS) with a periodic three-dimensional structure toward microwave absorption application was designed and synthesized. The microwave absorption performance was optimized with respect to the content of Co@Co3O4 nanoparticles. Co@Co3O4/NMCS with ∼20 wt % Co@Co3O4 achieves a reflection loss of -53.8 dB at 5.7 GHz. The simulated radar cross section demonstrated that the Co@Co3O4/NMCS can efficiently suppress the strong electromagnetic scattering from a metal groove structure, which further reveals its excellent absorbing performance. These periodic porous structures of N-doped mesoporous carbon spheres combined with the magnetic Co@Co3O4 nanoparticles contribute to the excellent microwave-absorbing performance.

19.
Talanta ; 211: 120729, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32070592

RESUMEN

Lateral flow immunoassay (LFIA) biosensor is a paper-based tool and widely utilized in various fields. Here, we developed a novel LFIA biosensor by introducing Co3O4 nanoparticles (NPs) as signal labels for highly sensitive detection of 3-amino-2-oxazolidinone (AOZ), a metabolite of furazolidone. The characteristic brown color of Co3O4 NPs enabled AOZ to be visually detected by the LFIA. Significantly, the size of Co3O4 NPs is relatively small compared with most of other signal labels, which could remarkably reduce steric hindrance, increase immunoreaction probability and shorten the analysis time. Under optimal conditions, the novel Co3O4 NPs-LFIA could possess high sensitivity for the detection of AOZ with a detection limit of 0.4 ng mL-1 by naked eyes, which was at least 3-fold improved than that of the conventional gold nanoparticles (GNPs) based LFIA. Moreover, the detection could be achieved within 6 min and without cross-reactions with other analogue small molecules. Taking merits of convenience, rapid and sensitivity, the proposed Co3O4 NPs-LFIA may be readily adapted for the detection of other small molecules.


Asunto(s)
Técnicas Biosensibles/métodos , Cobalto/química , Contaminación de Alimentos/análisis , Furazolidona/análisis , Oro/química , Inmunoensayo/métodos , Nanopartículas del Metal/química , Óxidos/química , Humanos , Límite de Detección
20.
Nanomaterials (Basel) ; 9(9)2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484387

RESUMEN

A novel approach is developed to synthesize a nitrogen-doped porous Co3O4/anthracite-derived graphene (Co3O4/AG) nanocomposite through a combined self-assembly and heat treatment process using resource-rich anthracite as a carbonaceous precursor. The nanocomposite contains uniformly distributed Co3O4 nanoparticles with a size smaller than 8 nm on the surface of porous graphene, and exhibits a specific surface area (120 m2·g-1), well-developed mesopores distributed at 3~10 nm, and a high level of nitrogen doping (5.4 at. %). These unique microstructure features of the nanocomposite can offer extra active sites and efficient pathways during the electrochemical reaction, which are conducive to improvement of the electrochemical performance for the anode material. The Co3O4/AG electrode possesses a high reversible capacity of 845 mAh·g-1 and an excellent rate capacity of 587 mAh·g-1. Furthermore, a good cyclic stability of 510 mAh·g-1 after 100 cycles at 500 mA·g-1 is maintained. Therefore, this work could provide an economical and effective route for the large-scale application of a Co3O4/AG nanocomposite as an excellent anode material in lithium-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA