Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Biol ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39214087

RESUMEN

Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.

2.
Proc Natl Acad Sci U S A ; 121(29): e2319829121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976736

RESUMEN

In the developing human brain, only 53 stochastically expressed clustered protocadherin (cPcdh) isoforms enable neurites from individual neurons to recognize and self-avoid while simultaneously maintaining contact with neurites from other neurons. Cell assays have demonstrated that self-recognition occurs only when all cPcdh isoforms perfectly match across the cell boundary, with a single mismatch in the cPcdh expression profile interfering with recognition. It remains unclear, however, how a single mismatched isoform between neighboring cells is sufficient to block erroneous recognitions. Using systematic cell aggregation experiments, we show that abolishing cPcdh interactions on the same membrane (cis) results in a complete loss of specific combinatorial binding between cells (trans). Our computer simulations demonstrate that the organization of cPcdh in linear array oligomers, composed of cis and trans interactions, enhances self-recognition by increasing the concentration and stability of cPcdh trans complexes between the homotypic membranes. Importantly, we show that the presence of mismatched isoforms between cells drastically diminishes the concentration and stability of the trans complexes. Overall, we provide an explanation for the role of the cPcdh assembly arrangements in neuronal self/non-self-discrimination underlying neuronal self-avoidance.


Asunto(s)
Cadherinas , Neuronas , Isoformas de Proteínas , Humanos , Neuronas/metabolismo , Cadherinas/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Comunicación Celular , Simulación por Computador , Neuritas/metabolismo , Membrana Celular/metabolismo
3.
Open Biol ; 14(4): 230383, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38629124

RESUMEN

Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.


Asunto(s)
Encéfalo , Adhesión Celular , Protocadherinas , Animales , Ratones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Epilepsia/metabolismo , Neuronas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(34): e2206175119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969779

RESUMEN

Crystal structures of many cell-cell adhesion receptors reveal the formation of linear "molecular zippers" comprising an ordered one-dimensional array of proteins that form both intercellular (trans) and intracellular (cis) interactions. The clustered protocadherins (cPcdhs) provide an exemplar of this phenomenon and use it as a basis of barcoding of vertebrate neurons. Here, we report both Metropolis and kinetic Monte Carlo simulations of cPcdh zipper formation using simplified models of cPcdhs that nevertheless capture essential features of their three-dimensional structure. The simulations reveal that the formation of long zippers is an implicit feature of cPcdh structure and is driven by their cis and trans interactions that have been quantitatively characterized in previous work. Moreover, in agreement with cryo-electron tomography studies, the zippers are found to organize into two-dimensional arrays even in the absence of attractive interactions between individual zippers. Our results suggest that the formation of ordered two-dimensional arrays of linear zippers of adhesion proteins is a common feature of cell-cell interfaces. From the perspective of simulations, they demonstrate the importance of a realistic depiction of adhesion protein structure and interactions if important biological phenomena are to be properly captured.


Asunto(s)
Neuronas , Conformación Proteica , Protocadherinas , Animales , Tomografía con Microscopio Electrónico , Método de Montecarlo , Neuronas/metabolismo , Unión Proteica , Protocadherinas/química , Vertebrados
5.
Front Mol Neurosci ; 14: 671891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149355

RESUMEN

Neurodevelopment in humans is a long, elaborate, and highly coordinated process involving three trimesters of prenatal development followed by decades of postnatal development and maturation. Throughout this period, the brain is highly sensitive and responsive to the external environment, which may provide a range of inputs leading to positive or negative outcomes. Fetal alcohol spectrum disorders (FASD) result from prenatal alcohol exposure (PAE). Although the molecular mechanisms of FASD are not fully characterized, they involve alterations to the regulation of gene expression via epigenetic marks. As in the prenatal stages, the postnatal period of neurodevelopment is also sensitive to environmental inputs. Often this sensitivity is reflected in children facing adverse conditions, such as maternal separation. This exposure to early life stress (ELS) is implicated in the manifestation of various behavioral abnormalities. Most FASD research has focused exclusively on the effect of prenatal ethanol exposure in isolation. Here, we review the research into the effect of prenatal ethanol exposure and ELS, with a focus on the continuum of epigenomic and transcriptomic alterations. Interestingly, a select few experiments have assessed the cumulative effect of prenatal alcohol and postnatal maternal separation stress. Regulatory regions of different sets of genes are affected by both treatments independently, and a unique set of genes are affected by the combination of treatments. Notably, epigenetic and gene expression changes converge at the clustered protocadherin locus and oxidative stress pathway. Functional studies using epigenetic editing may elucidate individual contributions of regulatory regions for hub genes and further profiling efforts may lead to the development of non-invasive methods to identify children at risk. Taken together, the results favor the potential to improve neurodevelopmental outcomes by epigenetic management of children born with FASD using favorable postnatal conditions with or without therapeutic interventions.

6.
Genome Biol ; 22(1): 18, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402197

RESUMEN

BACKGROUND: Although the genomes of monozygotic twins are practically identical, their methylomes may evolve divergently throughout their lifetime as a consequence of factors such as the environment or aging. Particularly for young and healthy monozygotic twins, DNA methylation divergence, if any, may be restricted to stochastic processes occurring post-twinning during embryonic development and early life. However, to what extent such stochastic mechanisms can systematically provide a stable source of inter-individual epigenetic variation remains uncertain until now. RESULTS: We enriched for inter-individual stochastic variation by using an equivalence testing-based statistical approach on whole blood methylation microarray data from healthy adolescent monozygotic twins. As a result, we identified 333 CpGs displaying similarly large methylation variation between monozygotic co-twins and unrelated individuals. Although their methylation variation surpasses measurement error and is stable in a short timescale, susceptibility to aging is apparent in the long term. Additionally, 46% of these CpGs were replicated in adipose tissue. The identified sites are significantly enriched at the clustered protocadherin loci, known for stochastic methylation in developing neurons. We also confirmed an enrichment in monozygotic twin DNA methylation discordance at these loci in whole genome bisulfite sequencing data from blood and adipose tissue. CONCLUSIONS: We have isolated a component of stochastic methylation variation, distinct from genetic influence, measurement error, and epigenetic drift. Biomarkers enriched in this component may serve in the future as the basis for universal epigenetic fingerprinting, relevant for instance in the discrimination of monozygotic twin individuals in forensic applications, currently impossible with standard DNA profiling.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Gemelos Monocigóticos/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Islas de CpG , Femenino , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
7.
Neurosci Bull ; 37(1): 117-131, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32939695

RESUMEN

There are more than a thousand trillion specific synaptic connections in the human brain and over a million new specific connections are formed every second during the early years of life. The assembly of these staggeringly complex neuronal circuits requires specific cell-surface molecular tags to endow each neuron with a unique identity code to discriminate self from non-self. The clustered protocadherin (Pcdh) genes, which encode a tremendous diversity of cell-surface assemblies, are candidates for neuronal identity tags. We describe the adaptive evolution, genomic structure, and regulation of expression of the clustered Pcdhs. We specifically focus on the emerging 3-D architectural and biophysical mechanisms that generate an enormous number of diverse cell-surface Pcdhs as neural codes in the brain.


Asunto(s)
Cadherinas , Neuronas , Encéfalo/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Membrana Celular , Humanos , Neuronas/metabolismo
8.
Neuroscience Bulletin ; (6): 117-131, 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-952021

RESUMEN

There are more than a thousand trillion specific synaptic connections in the human brain and over a million new specific connections are formed every second during the early years of life. The assembly of these staggeringly complex neuronal circuits requires specific cell-surface molecular tags to endow each neuron with a unique identity code to discriminate self from non-self. The clustered protocadherin (Pcdh) genes, which encode a tremendous diversity of cell-surface assemblies, are candidates for neuronal identity tags. We describe the adaptive evolution, genomic structure, and regulation of expression of the clustered Pcdhs. We specifically focus on the emerging 3-D architectural and biophysical mechanisms that generate an enormous number of diverse cell-surface Pcdhs as neural codes in the brain.

9.
Front Neurosci ; 14: 587819, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262685

RESUMEN

The clustered protocadherins (cPcdhs) are a subfamily of type I single-pass transmembrane cell adhesion molecules predominantly expressed in the brain. Their stochastic and combinatorial expression patterns encode highly diverse neural identity codes which are central for neuronal self-avoidance and non-self discrimination in brain circuit formation. In this review, we first briefly outline mechanisms for generating a tremendous diversity of cPcdh cell-surface assemblies. We then summarize the biological functions of cPcdhs in a wide variety of neurodevelopmental processes, such as neuronal migration and survival, dendritic arborization and self-avoidance, axonal tiling and even spacing, and synaptogenesis. We focus on genetic, epigenetic, and 3D genomic dysregulations of cPcdhs that are associated with various neuropsychiatric and neurodevelopmental diseases. A deeper understanding of regulatory mechanisms and physiological functions of cPcdhs should provide significant insights into the pathogenesis of mental disorders and facilitate development of novel diagnostic and therapeutic strategies.

10.
Cell Rep ; 30(8): 2655-2671.e7, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101743

RESUMEN

Non-clustered δ1- and δ2-protocadherins, close relatives of clustered protocadherins, function in cell adhesion and motility and play essential roles in neural patterning. To understand the molecular interactions underlying these functions, we used solution biophysics to characterize binding of δ1- and δ2-protocadherins, determined crystal structures of ectodomain complexes from each family, and assessed ectodomain assembly in reconstituted intermembrane junctions by cryoelectron tomography (cryo-ET). Homophilic trans (cell-cell) interactions were preferred for all δ-protocadherins, with additional weaker heterophilic interactions observed exclusively within each subfamily. As expected, δ1- and δ2-protocadherin trans dimers formed through antiparallel EC1-EC4 interfaces, like clustered protocadherins. However, no ectodomain-mediated cis (same-cell) interactions were detectable in solution; consistent with this, cryo-ET of reconstituted junctions revealed dense assemblies lacking the characteristic order observed for clustered protocadherins. Our results define non-clustered protocadherin binding properties and their structural basis, providing a foundation for interpreting their functional roles in neural patterning.


Asunto(s)
Fenómenos Biofísicos , Cadherinas/química , Cadherinas/metabolismo , Animales , Cadherinas/genética , Secuencia Conservada , Femenino , Células HEK293 , Humanos , Cinética , Liposomas , Modelos Moleculares , Mutación/genética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Soluciones , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Xenopus
11.
Cereb Cortex Commun ; 1(1): tgaa089, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34296145

RESUMEN

Cortical interneurons (cINs) are locally projecting inhibitory neurons that are distributed throughout the cortex. Due to their relatively limited range of influence, their arrangement in the cortex is critical to their function. cINs achieve this arrangement through a process of tangential and radial migration and apoptosis during development. In this study, we investigated the role of clustered protocadherins (cPcdhs) in establishing the spatial patterning of cINs through the use of genetic cPcdh knockout mice. cPcdhs are expressed in cINs and are known to play key functions in cell spacing and cell survival, but their role in cINs is poorly understood. Using spatial statistical analysis, we found that the 2 main subclasses of cINs, parvalbumin-expressing and somatostatin-expressing (SST) cINs, are nonrandomly spaced within subclass but randomly with respect to each other. We also found that the relative laminar distribution of each subclass was distinctly altered in whole α- or ß-cluster mutants. Examination of perinatal time points revealed that the mutant phenotypes emerged relatively late, suggesting that cPcdhs may be acting during cIN morphological elaboration and synaptogenesis. We then analyzed an isoform-specific knockout for pcdh-αc2 and found that it recapitulated the α-cluster knockout but only in SST cells, suggesting that subtype-specific expression of cPcdh isoforms may help govern subtype-specific spatial distribution.

12.
Proc Natl Acad Sci U S A ; 116(36): 17825-17830, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31431536

RESUMEN

Clustered protocadherins, a large family of paralogous proteins that play important roles in neuronal development, provide an important case study of interaction specificity in a large eukaryotic protein family. A mammalian genome has more than 50 clustered protocadherin isoforms, which have remarkable homophilic specificity for interactions between cellular surfaces. A large antiparallel dimer interface formed by the first 4 extracellular cadherin (EC) domains controls this interaction. To understand how specificity is achieved between the numerous paralogs, we used a combination of structural and computational approaches. Molecular dynamics simulations revealed that individual EC interactions are weak and undergo binding and unbinding events, but together they form a stable complex through polyvalency. Strongly evolutionarily coupled residue pairs interacted more frequently in our simulations, suggesting that sequence coevolution can inform the frequency of interaction and biochemical nature of a residue interaction. With these simulations and sequence coevolution, we generated a statistical model of interaction energy for the clustered protocadherin family that measures the contributions of all amino acid pairs at the interface. Our interaction energy model assesses specificity for all possible pairs of isoforms, recapitulating known pairings and predicting the effects of experimental changes in isoform specificity that are consistent with literature results. Our results show that sequence coevolution can be used to understand specificity determinants in a protein family and prioritize interface amino acid substitutions to reprogram specific protein-protein interactions.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Cadherinas/genética , Evolución Molecular , Variación Genética , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Relación Estructura-Actividad
13.
Semin Cell Dev Biol ; 69: 111-121, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28756270

RESUMEN

Spatial patterns of neuronal connectivity are critical for neural circuit function and information processing. For many neuron types, the development of stereotyped dendritic and axonal territories involves reiterative contacts between neurites and successive re-calibration of branch outgrowth and directionality. Here I review emerging roles for members of the atypical cadherins (Fmi/Celsrs) and the clustered Protocadherins (Pcdhs) in neurite patterning. These cell-surface molecules have shared functions: they engage in homophilic recognition and mediate dynamic and contact-dependent interactions to establish reproducible and space-filling arborization patterns. As shown in genetic and molecular studies, the atypical cadherins and clustered Pcdhs serve in multiple contexts and signal diverse actions such as neurite repulsion or selective adhesion. In some cell types, they regulate the non-overlapping arrangement of branches achieved through homotypic interactions, such as in self-avoidance or tiling. In others, they promote dendritic complexity through cell-cell interactions. With critical roles in both the fine-scale arrangement of axonal and dendritic branching and the large-scale organization of axon tracts and neuronal networks, the atypical cadherins and clustered Pcdhs are key regulators of neural circuit assembly and function.


Asunto(s)
Cadherinas/metabolismo , Neuronas/metabolismo , Animales , Cadherinas/química , Humanos , Modelos Biológicos , Sinapsis/metabolismo
14.
Semin Cell Dev Biol ; 69: 140-150, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28743640

RESUMEN

Clustered protocadherins mediate neuronal self-recognition and non-self discrimination-neuronal "barcoding"-which underpin neuronal self-avoidance in vertebrate neurons. Recent structural, biophysical, computational, and cell-based studies on protocadherin structure and function have led to a compelling molecular model for the barcoding mechanism. Protocadherin isoforms assemble into promiscuous cis-dimeric recognition units and mediate cell-cell recognition through homophilic trans-interactions. Each recognition unit is composed of two arms extending from the membrane proximal EC6 domains. A cis-dimeric recognition unit with each arm coding adhesive trans homophilic specificity can generate a zipper-like assembly that in turn suggests a chain termination mechanism for self-vs-non-self-discrimination among vertebrate neurons.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Neuronas/metabolismo , Animales , Humanos , Modelos Moleculares , Filogenia , Multimerización de Proteína , Relación Estructura-Actividad
15.
Alcohol ; 60: 67-75, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28187949

RESUMEN

Rodent models of Fetal Alcohol Spectrum Disorders (FASD) have revealed that prenatal alcohol exposure (PAE) results in differential DNA cytosine methylation in the developing brain. The resulting genome-wide methylation changes are enriched in genes with neurodevelopmental functions. The profile of differential methylation is dynamic and present in some form for life. The methylation changes are transmitted across subsequent mitotic divisions, where they are maintained and further modified over time. More recent follow up has identified a profile of the differential methylation in the buccal swabs of young children born with FASD. While distinct from the profile observed in brain tissue from rodent models, there are similarities. These include changes in genes belonging to a number of neurodevelopmental and behavioral pathways. Specifically, there is increased methylation at the clustered protocadherin genes and deregulation of genomically imprinted genes, even though no single gene is affected in all patients studied to date. These novel results suggest further development of a methylation based strategy could enable early and accurate diagnostics and therapeutics, which have remained a challenge in FASD research. There are two aspects of this challenge that must be addressed in the immediate future: First, the long-term differential methylomics observed in rodent models must be functionally confirmed. Second, the similarities in differential methylation must be further established in humans at a methylomic level and overcome a number of technical limitations. While a cure for FASD is challenging, there is an opportunity for the development of early diagnostics and attenuations towards a higher quality of life.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Etanol/efectos adversos , Trastornos del Espectro Alcohólico Fetal/genética , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Modelos Animales de Enfermedad , Femenino , Trastornos del Espectro Alcohólico Fetal/diagnóstico , Trastornos del Espectro Alcohólico Fetal/terapia , Perfilación de la Expresión Génica , Interacción Gen-Ambiente , Marcadores Genéticos , Edad Gestacional , Humanos , Ratones , Embarazo , Factores de Riesgo , Factores de Tiempo , Transcriptoma
16.
Elife ; 52016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782885

RESUMEN

Stochastic cell-surface expression of α-, ß-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealing trans-homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depict cis-interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain. The trans-dimer structures reveal determinants of γ-Pcdh isoform-specific homophilic recognition. We identified and structurally mapped cis-dimerization mutations to the C-terminal ectodomain structures. Biophysical studies showed that Pcdh ectodomains from γB-subfamily isoforms formed cis dimers, whereas γA isoforms did not, but both γA and γB isoforms could interact in cis with α-Pcdhs. Together, these data show how interaction specificity is distributed over all domains of the γ-Pcdh trans interface, and suggest that subfamily- or isoform-specific cis-interactions may play a role in the Pcdh-mediated neuronal self-recognition code.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Animales , Proteínas Relacionadas con las Cadherinas , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
17.
BMC Evol Biol ; 16: 75, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27068704

RESUMEN

BACKGROUND: Brain-expressed proteins that have undergone functional change during human evolution may contribute to human cognitive capacities, and may also leave us vulnerable to specifically human diseases, such as schizophrenia, autism or Alzheimer's disease. In order to search systematically for those proteins that have changed the most during human evolution and that might contribute to brain function and pathology, all proteins with orthologs in chimpanzee, orangutan and rhesus macaque and annotated as being expressed on the surface of cells in the human central nervous system were ordered by the number of human-specific amino acid differences that are fixed in modern populations. RESULTS: PCDHB11, a beta-protocadherin homologous to murine cell adhesion proteins, stood out with 12 substitutions and maintained its lead after normalizing for protein size and applying weights for amino acid exchange probabilities. Human PCDHB11 was found to cause homophilic cell adhesion, but at lower levels than shown for other clustered protocadherins. Homophilic adhesion caused by a PCDHB11 with reversion of human-specific changes was as low as for modern human PCDHB11; while neither human nor reverted PCDHB11 adhered to controls, they did adhere to each other. A loss of function in PCDHB11 is unlikely because intra-human variability did not increase relative to the other human beta-protocadherins. CONCLUSIONS: The brain-expressed protein with the highest number of human-specific substitutions is PCDHB11. In spite of its fast evolution and low intra-human variability, cell-based tests on the only proposed function for PCDHB11 did not indicate a functional change.


Asunto(s)
Encéfalo/fisiología , Cadherinas/genética , Evolución Molecular , Proteínas del Tejido Nervioso/genética , Animales , Evolución Biológica , Encéfalo/patología , Cadherinas/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Técnicas Citológicas , Humanos , Células K562 , Macaca mulatta/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Pan troglodytes/genética , Pongo abelii/genética , Protocadherinas
18.
Proc Natl Acad Sci U S A ; 112(27): E3535-44, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26091879

RESUMEN

Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways. We provide biochemical and biophysical evidence that Smchd1-chromatin interactions are established through the homodimeric hinge domain of Smchd1 and, intriguingly, that the hinge domain also has the capacity to bind DNA and RNA. Our results suggest Smchd1 imparts epigenetic regulation via physical association with chromatin, which may antagonize Ctcf-facilitated chromatin interactions, resulting in coordinated transcriptional control.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Genoma , Animales , Sitios de Unión/genética , Western Blotting , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Factor de Unión a CCCTC , Células Cultivadas , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Histonas/metabolismo , Masculino , Metilación , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma/genética
19.
Trends Cell Biol ; 23(9): 449-56, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23689023

RESUMEN

One of the remarkable characteristics of higher organisms is the enormous assortment of cell types that emerge from a common genome. The immune system, with the daunting duty of detecting an astounding number of pathogens, and the nervous system with the equally bewildering task of perceiving and interpreting the external world, are the quintessence of cellular diversity. As we began to appreciate decades ago, achieving distinct expression programs among similar cell types cannot be accomplished solely by deterministic regulatory systems, but by the involvement of some type of stochasticity. In the last few years our understanding of these non-deterministic mechanisms is advancing, and this review will provide a brief summary of the current view of stochastic gene expression with focus on olfactory receptor (OR) gene choice, the epigenetic underpinnings of which recently began to emerge.


Asunto(s)
Cadherinas/genética , Regulación de la Expresión Génica , Receptores de Antígenos/genética , Receptores Odorantes/genética , Alelos , Animales , Epigénesis Genética , Humanos , Mamíferos , ARN Mensajero/genética , Receptores de Antígenos/inmunología , Receptores Odorantes/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA