Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Geriatr ; 24(1): 251, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475700

RESUMEN

INTRODUCTION: Surgeries conducted at night can impact patients' prognosis, and the mechanism may be related to circadian rhythm, which influence normal physiological functions and pathophysiological changes. Melatonin is primarily a circadian hormone with hypnotic and chronobiotic effects, thereby affecting disease outcomes through influencing the expression of inflammatory factors and biochemical metabolism. This study aims to observe the effects of circadian rhythms on emergence agitation and early postoperative delirium of older individuals undergoing thoracoscopic lung cancer surgery and explore the possible regulatory role of melatonin. METHODS: This prospective, observational, cohort study will involve 240 patients. Patients will be routinely divided into three groups based on the time of the surgery: T1 (8:00-14:00), T2 (14:00-20:00) and T3 group (20:00-08:00). The primary outcome will be the incidence of emergence agitation assessed via the Richmond Agitation and Sedation Scale (RASS) in the post-anesthesia care unit (PACU). Secondary outcomes will include the incidence of early postoperative delirium assessed via the Confusion Assessment Method (CAM) on postoperative day 1, pain status assessed via the numerical rating scale (NRS) in the PACU, sleep quality on postoperative day 1 and changes in perioperative plasma melatonin, clock genes and inflammatory factor levels. Postoperative surgical complications, intensive care unit admission and hospital length of stay will also be evaluated. DISCUSSION: This paper describes a protocol for investigating the effects of circadian rhythms on emergence agitation and early postoperative delirium of older individuals undergoing thoracoscopic lung cancer surgery, as well as exploring the potential regulatory role of melatonin. By elucidating the mechanism by which circadian rhythms impact postoperative recovery, we aim to develop a new approach for achieving rapid recovery during perioperative period. TRIAL REGISTRATION: The study was registered at the Chinese Clinical Trials Registry (ChiCTR2000040252) on November 26, 2020, and refreshed on September 4, 2022.


Asunto(s)
Delirio del Despertar , Neoplasias Pulmonares , Melatonina , Humanos , Anciano , Delirio del Despertar/epidemiología , Estudios Prospectivos , Estudios de Cohortes , Complicaciones Posoperatorias/epidemiología , Estudios Observacionales como Asunto
2.
Proc Natl Acad Sci U S A ; 120(14): e2220102120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996103

RESUMEN

Molecular clocks in the periphery coordinate tissue-specific daily biorhythms by integrating input from the hypothalamic master clock and intracellular metabolic signals. One such key metabolic signal is the cellular concentration of NAD+, which oscillates along with its biosynthetic enzyme, nicotinamide phosphoribosyltransferase (NAMPT). NAD+ levels feed back into the clock to influence rhythmicity of biological functions, yet whether this metabolic fine-tuning occurs ubiquitously across cell types and is a core clock feature is unknown. Here, we show that NAMPT-dependent control over the molecular clock varies substantially between tissues. Brown adipose tissue (BAT) requires NAMPT to sustain the amplitude of the core clock, whereas rhythmicity in white adipose tissue (WAT) is only moderately dependent on NAD+ biosynthesis, and the skeletal muscle clock is completely refractory to loss of NAMPT. In BAT and WAT, NAMPT differentially orchestrates oscillation of clock-controlled gene networks and the diurnality of metabolite levels. NAMPT coordinates the rhythmicity of TCA cycle intermediates in BAT, but not in WAT, and loss of NAD+ abolishes these oscillations similarly to high-fat diet-induced circadian disruption. Moreover, adipose NAMPT depletion improved the ability of animals to defend body temperature during cold stress but in a time-of-day-independent manner. Thus, our findings reveal that peripheral molecular clocks and metabolic biorhythms are shaped in a highly tissue-specific manner by NAMPT-dependent NAD+ synthesis.


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Animales , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Ritmo Circadiano/fisiología , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Citocinas/metabolismo
3.
AoB Plants ; 13(5): plab048, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34567492

RESUMEN

Flowering in maize (Zea mays) is influenced by photoperiod. The CO, CO-like/COL and TOC1 (CCT) domain protein-encoding genes in maize, ZmCCTs, are particularly important for photoperiod sensitivity. However, little is known about CCT protein-encoding gene number across plant species or among maize inbred lines. Therefore, we analysed CCT protein-encoding gene number across plant species, and characterized ZmCCTs in different inbred lines, including structural variations (SVs), copy number variations (CNVs), expression under stresses, dark-dark (DD) and dark-light (DL) cycles, interaction network and associations with maize quantitative trait loci (QTLs) by referring to the latest v4 genome data of B73. Gene number varied greatly across plant species, more in polyploids than in diploids. The numbers of ZmCCTs identified were 58 in B73, 59 in W22, 48 in Mo17, and 57 in Huangzao4 for temperate maize inbred lines, and 68 in tropical maize inbred line SK. Some ZmCCTs underwent duplications and presented chromosome collinearity. Structural variations and CNVs were found but they had no germplasm specificity. Forty-two ZmCCTs responded to stresses. Expression of 37 ZmCCTs in embryonic leaves during seed germination of maize under DD and DL cycles was roughly divided into five patterns of uphill pattern, downhill-pattern, zigzag-pattern, └-pattern and ⅃-pattern, indicating some of them have a potential to perceive dark and/or dark-light transition. Thirty-three ZmCCTs were co-expressed with 218 other maize genes; and 24 ZmCCTs were associated with known QTLs. The data presented in this study will help inform further functions of ZmCCTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA