Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Mol Cell Biochem ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276171

RESUMEN

The increased global prevalence of metabolic dysfunction-associated steatohepatitis (MASLD) has been closely associated with chronic disorders of the circadian clock. Herein, we investigate the role of Clock, a core circadian gene, in the pathogenesis of MASLD. Wild-type (WT) and liver-specific Clock knockdown (Clock-KD) mice were fed a Western diet for 20 weeks to induce MASLD. A cellular MASLD model was established by treating AML12 cells with free fatty acids and the effects of Clock knockdown were examined following transfection with Clock siRNA. Increased lipid deposition and more severe steatohepatitis and fibrosis were observed in the livers of Western diet-fed but not normal chow diet-fed Clock-KD mice after 20 weeks compared to WT mice. Moreover, the Clock gene was found to be significantly downregulated in WT MASLD mice. The Clock gene was shown to regulate the expression of lipophagy-related proteins (LC3B, P62, RAB7, and PLIN2) in vivo and in vitro. Knockdown of Clock was found to inhibit lipophagy resulting in increased accumulation of lipid droplets in the mouse liver and AML12 cells. Interestingly, the CLOCK protein was shown to interact with P62. However, knockdown of the Clock gene did not promote transcription of the P62 gene but suppressed degradation of the P62 protein during lipophagy in AML12 cells. The hepatic Clock gene regulates lipophagy and affects lipid droplet deposition in liver cells, and thus plays a critical role in the development of MASLD induced by a Western diet.

2.
Nutrients ; 16(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39064706

RESUMEN

Circadian rhythm plays an important role in intestinal homeostasis and intestinal immune function. Circadian rhythm dysregulation was reported to induce intestinal microbiota dysbiosis, intestinal barrier disruption, and trigger intestinal inflammation. However, the relationship between intestinal microbiota metabolites and the circadian rhythm of the intestinal barrier was still unclear. Urolithin A (UA), a kind of intestinal microbial metabolite, was selected in this study. Results showed UA influenced on the expression rhythm of the clock genes BMAL1 and PER2 in intestinal epithelial cells. Furthermore, the study investigated the effects of UA on the expression rhythms of clock genes (BMAL1 and PER2) and tight junctions (OCLN, TJP1, and CLND1), all of which were dysregulated by inflammation. In addition, UA pre-treatment by oral administration to female C57BL/6 mice showed the improvement in the fecal IgA concentrations, tight junction expression (Clnd1 and Clnd4), and clock gene expression (Bmal1 and Per2) in a DSS-induced colitis model induced using DSS treatment. Finally, the Nrf2-SIRT1 signaling pathway was confirmed to be involved in UA's effect on the circadian rhythm of intestinal epithelial cells by antagonist treatment. This study also showed evidence that UA feeding showed an impact on the central clock, which are circadian rhythms in SCN. Therefore, this study highlighted the potential of UA in treating diseases like IBD with sleeping disorders by improving the dysregulated circadian rhythms in both the intestinal barrier and the SCN.


Asunto(s)
Ritmo Circadiano , Colitis , Cumarinas , Mucosa Intestinal , Ratones Endogámicos C57BL , Animales , Ritmo Circadiano/efectos de los fármacos , Femenino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Ratones , Cumarinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación , Factor 2 Relacionado con NF-E2/metabolismo , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Sulfato de Dextran , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoglobulina A/metabolismo , Sirtuina 1
3.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000563

RESUMEN

Circadian rhythms regulate physiological processes in approximately 24 h cycles, and their disruption is associated with various diseases. Inflammation may perturb circadian rhythms, though these interactions remain unclear. This study examined whether systemic inflammation induced by an intraperitoneal injection of lipopolysaccharide (LPS) could alter central and peripheral circadian rhythms and diurnal neuroimmune dynamics. Mice were randomly assigned to two groups: the saline control group and the LPS group. The diurnal expression of circadian clock genes and inflammatory cytokines were measured in the hypothalamus, hippocampus, and liver. Diurnal dynamic behaviors of microglia were also assessed. Our results revealed that the LPS perturbed circadian gene oscillations in the hypothalamus, hippocampus, and liver. Furthermore, systemic inflammation induced by the LPS could trigger neuroinflammation and perturb the diurnal dynamic behavior of microglia in the hippocampus. These findings shed light on the intricate link between inflammation and circadian disruption, underscoring their significance in relation to neurodegenerative diseases.


Asunto(s)
Ritmo Circadiano , Inflamación , Lipopolisacáridos , Animales , Ratones , Masculino , Microglía/metabolismo , Microglía/inmunología , Hipotálamo/metabolismo , Hipotálamo/inmunología , Hipocampo/metabolismo , Citocinas/metabolismo , Hígado/metabolismo , Hígado/patología , Hígado/inmunología , Ratones Endogámicos C57BL , Relojes Circadianos/genética , Neuroinmunomodulación
4.
J Transl Med ; 22(1): 662, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010104

RESUMEN

BACKGROUND: Temporomandibular joint osteoarthritis (TMJOA) has a high incidence rate, but its pathogenesis remains unclear. Circadian rhythm is an important oscillation in the human body and influences various biological activities. However, it is still unclear whether circadian rhythm affects the onset and development of TMJOA. METHODS: We disrupted the normal rhythm of rats and examined the expression of core clock genes in the mandibular condylar cartilage of the jaw and histological changes in condyles. After isolating rat mandibular condylar chondrocytes, we upregulated or downregulated the clock gene Per1, examined the expression of cartilage matrix-degrading enzymes, tested the activation of the GSK3ß/ß-CATENIN pathway and verified it using agonists and inhibitors. Finally, after downregulating the expression of Per1 in the mandibular condylar cartilage of rats with jet lag, we examined the expression of cartilage matrix-degrading enzymes and histological changes in condyles. RESULTS: Jet lag led to TMJOA-like lesions in the rat mandibular condyles, and the expression of the clock gene Per1 and cartilage matrix-degrading enzymes increased in the condylar cartilage of rats. When Per1 was downregulated or upregulated in mandibular condylar chondrocytes, the GSK3ß/ß-CATENIN pathway was inhibited or activated, and the expression of cartilage matrix-degrading enzymes decreased or increased, which can be rescued by activator and inhibitor of the GSK3ß/ß-CATENIN pathway. Moreover, after down-regulation of Per1 in mandibular condylar cartilage in vivo, significant alleviation of cartilage degradation, cartilage loss, subchondral bone loss induced by jet lag, and inhibition of the GSK3ß/ß-CATENIN signaling pathway were observed. Circadian rhythm disruption can lead to TMJOA. The clock gene Per1 can promote the occurrence of TMJOA by activating the GSK3ß/ß-CATENIN pathway and promoting the expression of cartilage matrix-degrading enzymes. The clock gene Per1 is a target for the prevention and treatment of TMJOA.


Asunto(s)
Condrocitos , Ritmo Circadiano , Glucógeno Sintasa Quinasa 3 beta , Cóndilo Mandibular , Osteoartritis , Proteínas Circadianas Period , Articulación Temporomandibular , Regulación hacia Arriba , beta Catenina , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , beta Catenina/metabolismo , Osteoartritis/patología , Osteoartritis/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Cóndilo Mandibular/patología , Cóndilo Mandibular/metabolismo , Articulación Temporomandibular/patología , Articulación Temporomandibular/metabolismo , Masculino , Ratas Sprague-Dawley , Transducción de Señal , Ratas
5.
Zhen Ci Yan Jiu ; 49(7): 743-750, 2024 Jul 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39020493

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) pre-conditioning on the expression rhythm of clock gene Bmal1 in the uterine tissue of rats with controlled ovarian hyperstimulation(COH), so as to explore its mechanisms underlying improvement of the endometrial receptivity of ovarian superovulation during implantation. METHODS: Seventy-two female SD rats with typical estrous cycles were randomly divided into normal control, model and EA pre-conditioning (pre-EA) groups, with 24 rats in each group. The COH model was established by giving the rats with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (HCG) by intraperitoneal injection. The rats of the pre-EA group received EA stimulation (1 Hz/5 Hz, a tolerable strength) of "Guanyuan"(CV4) and "Sanyinjiao"(SP6) for 15 min each time, once daily (at 21:00 every day). After successive EA intervention during the first two estrous cycles, the modeling began in the third estrus cycle and the EA intervention was continued till the end of modeling, followed by raising the rats with superovulation induction and male rats undergoing vasoligation in one cage (1∶1). The rats during the estrum in the normal control group or those of the model group at the end of modeling were raised together with the male rats undergoing vasoligation in one cage. On the 5th day (04:00 AM) after raising in one cage, the rats in the three groups were sacrificed in six batches every 4 hours, with 4 rats in each group in each batch. The H.E. staining was used for revealing alterations of the endometrial thickness, number of glands and blood vessels and tissue histology, and ELISA employed to ascertain the contents of estradiol (E2) and progesterone (Pg) in serum. The expression rhythm of core clock gene Bmal1 [In the present study, Zeitgeber time (ZT) is an artificially set laboratory time, i.e., ZT7 (07:00) is light on and ZT19 (19:00) is light off.] and the expression of endometrial HoxA10 and leukemia inhibitory factor (LIF) mRNAs were detected by quantitative real-time PCR. The Western blot was employed to detect the expression levels of HoxA10 and LIF proteins. RESULTS: Findings of the clock gene Bmal1 level showed that the expression peak was at ZT12 and the valley value at ZT20 in the normal control group, and that of the peak value was at ZT20 and valley value at ZT12 in the model group, while in the pre-EA group, the peak value was at ZT8, and the valley value at ZT4. The difference of Bmal1 levels among the three groups was most significant at ZT12 (12:00), therefore, the tissue samples were taken at ZT12 in this study for comparison of the levels of different indexes among the 3 groups. Compared with the control group, the endometrial thickness, number of glands and blood vessels, HoxA10 and LIF mRNAs and proteins were significantly down-regulated (P<0.01, P<0.05), and contents of serum E2 and Pg were considerably up-regulated in the model group (P<0.01, P<0.05). Relevant to the model group, the pre-EA group had an apparent increase in the endometrial thickness, number of glands and blood vessels, and expression levels of HoxA10 and LIF mRNAs and proteins (P<0.05, P<0.01), and a marked decrease in the serum Pg (P<0.05). At the ZT12 (12:00 noon), compared with the normal control group, the mRNA level of Bmal1 was significantly decreased in the model group (P<0.01);and compared with the model group, the level of Bmal1 mRNA was significantly increased in the pre-EA group (P<0.05). In addition, at the node of ZT16, the mRNA level of Bmal1 was significantly decreased in the model group in comparison with the normal control group (P<0.01). CONCLUSIONS: EA preconditioning can improve the endometrial receptivity during the implantation window period in rats with COH, which may be related to its functions in regulating the expression of clock gene Bmal1 in the uterine tissue and in correcting the disturbance of clock gene rhythm.


Asunto(s)
Factores de Transcripción ARNTL , Electroacupuntura , Ratas Sprague-Dawley , Útero , Animales , Femenino , Ratas , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Útero/metabolismo , Humanos , Masculino , Puntos de Acupuntura , Inducción de la Ovulación
6.
World J Clin Oncol ; 15(7): 818-834, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39071458

RESUMEN

This review delved into the intricate relationship between circadian clocks and physiological processes, emphasizing their critical role in maintaining homeostasis. Orchestrated by interlocked clock genes, the circadian timekeeping system regulates fundamental processes like the sleep-wake cycle, energy metabolism, immune function, and cell proliferation. The central oscillator in the hypothalamic suprachiasmatic nucleus synchronizes with light-dark cycles, while peripheral tissue clocks are influenced by cues such as feeding times. Circadian disruption, linked to modern lifestyle factors like night shift work, correlates with adverse health outcomes, including metabolic syndrome, cardiovascular diseases, infections, and cancer. We explored the molecular mechanisms of circadian clock genes and their impact on metabolic disorders and cancer pathogenesis. Specific associations between circadian disruption and endocrine tumors, spanning breast, ovarian, testicular, prostate, thyroid, pituitary, and adrenal gland cancers, are highlighted. Shift work is associated with increased breast cancer risk, with PER genes influencing tumor progression and drug resistance. CLOCK gene expression correlates with cisplatin resistance in ovarian cancer, while factors like aging and intermittent fasting affect prostate cancer. Our review underscored the intricate interplay between circadian rhythms and cancer, involving the regulation of the cell cycle, DNA repair, metabolism, immune function, and the tumor microenvironment. We advocated for integrating biological timing into clinical considerations for personalized healthcare, proposing that understanding these connections could lead to novel therapeutic approaches. Evidence supports circadian rhythm-focused therapies, particularly chronotherapy, for treating endocrine tumors. Our review called for further research to uncover detailed connections between circadian clocks and cancer, providing essential insights for targeted treatments. We emphasized the importance of public health interventions to mitigate lifestyle-related circadian disruptions and underscored the critical role of circadian rhythms in disease mechanisms and therapeutic interventions.

7.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119782, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38871225

RESUMEN

Circadian Locomotor Output Cycles Kaput (CLOCK) is one of the circadian clock genes and is considered to be a fundamental regulatory gene in the circadian rhythm, responsible for mediating several biological processes. Therefore, abnormal expression of CLOCK affects its role in the circadian clock and its more general function as a direct regulator of gene expression. This dysfunction can lead to severe pathological effects, including cancer. To better understand the role of CLOCK in cancer, we compiled this review to describe the biological function of CLOCK, and especially highlighted its function in cancer development, progression, tumor microenvironment, cancer cell metabolism, and drug resistance.


Asunto(s)
Proteínas CLOCK , Relojes Circadianos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Relojes Circadianos/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Ritmo Circadiano/genética , Animales , Resistencia a Antineoplásicos/genética
8.
J Exp Clin Cancer Res ; 43(1): 174, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902772

RESUMEN

BACKGROUND: The androgen receptor (AR) is a drug target used to inhibit AR and prostate cancer (PCa) growth. Surprisingly, treatment with supraphysiological androgen level (SAL), used in bipolar androgen therapy, inhibits growth of PCa suggesting a tumor-suppressive activity by SAL. SAL was shown to induce cellular senescence in PCa. METHODS: RNA-seq and transcriptome analysis, ChIP-seq, human 3D PCa spheroids, mouse xenografted castration-resistant PCa, knockdown and overexpression, Co-immunoprecipitation (Co-IP), translocation analysis, immune detection, qRT-PCR, protein-protein interaction modelling. RESULTS: Here, mice xenografts with castration-resistant PCa tumors show that SAL inhibits cancer growth in vivo suggesting that SAL activates a tumor-suppressive mechanism. RNA-seq and ChIP-seq revealed the clock gene BHLHE40 is a novel direct AR target. Compared to adjacent human prostate tissues, the expression of BHLHE40 is reduced in PCa tumors and associated with reduced survival. Knockdown suggests that BHLHE40 mediates SAL-induced cellular senescence including tumor spheroids. Interestingly, a large overlap of differentially expressed gene sets was identified between BHLHE40 and SAL leading to the identification of four classes of SAL-BHLHE40 transcriptome landscapes. Co-IP and modelling suggest binding of BHLHE40 to AR and their co-translocation into nucleus by SAL treatment. Further, RNA-seq and ChIP-seq analysis indicate that the atypical tumor suppressive cyclin G2 emerged as a novel downstream target of BHLHE40 and a mediator of SAL-induced cellular senescence. CONCLUSIONS: The data provide evidence of the tumor suppressive activity of SAL and a novel signaling by the AR-BHLHE40-CCNG2 axis for androgen-induced cellular senescence, linking circadian rhythm factor to androgen signaling as a novel tumor suppressive pathway.


Asunto(s)
Andrógenos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Senescencia Celular , Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Andrógenos/farmacología , Andrógenos/metabolismo , Línea Celular Tumoral , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Heliyon ; 10(10): e30708, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803898

RESUMEN

Objectives: Vascular diseases are often caused by the interaction between macrophages and vascular smooth muscle cells (VSMCs). This study aims to elucidate whether chronotherapy with rosiglitazone (RSG) can regulate the secretion rhythm of macrophages, thereby controlling the phenotypic switch of VSMCs and clarifying the potential molecular mechanisms, providing a chronotherapeutic approach for the treatment of vascular diseases. Methods: RAW264.7 cells and A7r5 cells were synchronized via a 50 % FBS treatment. M1-type macrophages were induced through Lipopolysaccharide (LPS) exposure. Additionally, siRNA and plasmids targeting PPARγ were transfected into macrophages. The assessment encompassed cell viability, migration, inflammatory factor levels, lipid metabolites, clock gene expression, and relative protein expression. Results: We revealed that, in alignment with core clock genes Bmal1 and CLOCK, RSG administration at ZT2 advanced the phase of TNF-α release rhythm, while ZT12 administration shifted it backward. Incubation with TNF-α at ZT2 significantly promoted the phenotype switch of VSMCs. This effect diminished when incubated at ZT12, implicating the involvement of the clock-MAPK pathway in VSMCs. Furthermore, RSG administration at ZT2 advanced the phases of PPARγ and Bmal1 genes, whereas ZT12 administration shifted them backward. Additionally, PPARγ overexpression significantly induced triglyceride (TG) accumulation in macrophages. Exogenous TG upregulated Bmal1 and CLOCK gene expression in macrophages and significantly increased TNF-α release. Conclusion: Chronotherapy involving RSG induces TG accumulation within macrophages, resulting in alterations in circadian gene rhythms. These changes, in turn, modulate the phase of rhythmic TNF-α release and play a regulatory role in VSMCs phenotype switch. Our study establishes a theoretical foundation for chronotherapy of PPARγ agonists.

10.
Int Immunopharmacol ; 132: 111993, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38565044

RESUMEN

OBJECTIVE: Psoriasis is an immune-mediated skin disease where the IL-17 signaling pathway plays a crucial role in its development. Chronic circadian rhythm disorder in psoriasis pathogenesis is gaining more attention. The relationship between IL and 17 signaling pathway and skin clock genes remains poorly understood. METHODS: GSE121212 with psoriatic lesion and healthy controls was used as the exploration cohort for searching analysis. Datasets GSE54456, GSE13355, GSE14905, GSE117239, GSE51440, and GSE137218 were applied to validation analysis. Single-cell RNA sequencing (scRNA-seq) dataset GSE173706 was used to explore the F3 expression and related pathway activities in single-cell levels. Through intersecting with high-expression DEGs, F3 was selected as the signature skin circadian gene in psoriasis for further investigation. Functional analyses, including correlation analyses, prediction of transcription factors, protein-protein interaction, and single gene GSEA to explore the potential roles of F3. ssGSEA algorithm was performed to uncover the immune-related characteristics of psoriasis. We further explored F3 expression in the specific cell population in scRNA-seq dataset, besides this, AUCell analysis was performed to explore the pathway activities and the results were further compared between the specific cell cluster. Immunohistochemistry experiment, RT-qPCR was used to validate the location and expression of F3, small interfering RNA (siRNA) transfection experiment in HaCaT, and transcriptome sequencing analysis were applied to explore the potential function of F3. RESULTS: F3 was significantly down-regulated in psoriasis and interacted with IL-17 signaling pathway. Low expression of F3 could upregulate the receptor of JAK-STAT signaling, thereby promoting keratinocyte inflammation. CONCLUSION: Our research revealed a bidirectional link between the skin circadian gene F3 and the IL-17 signaling pathway in psoriasis, suggesting that F3 may interact with the IL-17 pathway by activating JAK-STAT within keratinocytes and inducing abnormal intracellular inflammation.


Asunto(s)
Interleucina-17 , Queratinocitos , Psoriasis , Transducción de Señal , Piel , Psoriasis/genética , Psoriasis/inmunología , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Queratinocitos/metabolismo , Queratinocitos/inmunología , Piel/patología , Piel/inmunología , Piel/metabolismo , Relojes Circadianos/genética , Biomarcadores/metabolismo , Índice de Severidad de la Enfermedad , Células HaCaT
11.
Hum Reprod ; 39(6): 1167-1175, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38600622

RESUMEN

Polycystic ovary syndrome (PCOS) affects 6-20% of reproductive-aged women. It is associated with increased risks of metabolic syndrome, Type 2 diabetes, cardiovascular diseases, mood disorders, endometrial cancer and non-alcoholic fatty liver disease. Although various susceptibility loci have been identified through genetic studies, they account for ∼10% of PCOS heritability. Therefore, the etiology of PCOS remains unclear. This review explores the role of epigenetic changes and modifications in circadian clock genes as potential contributors to PCOS pathogenesis. Epigenetic alterations, such as DNA methylation, histone modifications, and non-coding RNA changes, have been described in diseases related to PCOS, such as diabetes, cardiovascular diseases, and obesity. Furthermore, several animal models have illustrated a link between prenatal exposure to androgens or anti-Müllerian hormone and PCOS-like phenotypes in subsequent generations, illustrating an epigenetic programming in PCOS. In humans, epigenetic changes have been reported in peripheral blood mononuclear cells (PBMC), adipose tissue, granulosa cells (GC), and liver from women with PCOS. The genome of women with PCOS is globally hypomethylated compared to healthy controls. However, specific hypomethylated or hypermethylated genes have been reported in the different tissues of these women. They are mainly involved in hormonal regulation and inflammatory pathways, as well as lipid and glucose metabolism. Additionally, sleep disorders are present in women with PCOS and disruptions in clock genes' expression patterns have been observed in their PBMC or GCs. While epigenetic changes hold promise as diagnostic biomarkers, the current challenge lies in distinguishing whether these changes are causes or consequences of PCOS. Targeting epigenetic modifications potentially opens avenues for precision medicine in PCOS, including lifestyle interventions and drug therapies. However, data are still lacking in large cohorts of well-characterized PCOS phenotypes. In conclusion, understanding the interplay between genetics, epigenetics, and circadian rhythms may provide valuable insights for early diagnosis and therapeutic strategies in PCOS in the future.


Asunto(s)
Relojes Circadianos , Metilación de ADN , Epigénesis Genética , Síndrome del Ovario Poliquístico , Humanos , Síndrome del Ovario Poliquístico/genética , Femenino , Relojes Circadianos/genética , Animales
12.
Peptides ; 177: 171229, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663583

RESUMEN

Circadian rhythms optimally regulate numerous physiological processes in an organism and synchronize them with the external environment. The suprachiasmatic nucleus (SCN), the center of the circadian clock in mammals, is composed of multiple cell types that form a network that provides the basis for the remarkable stability of the circadian clock. Among the neuropeptides expressed in the SCN, arginine vasopressin (AVP) has attracted much attention because of its deep involvement in the function of circadian rhythms, as elucidated in particular by studies using genetically engineered mice. This review briefly summarizes the current knowledge on the peptidergic distribution and topographic neuronal organization in the SCN, the molecular mechanisms of the clock genes, and the relationship between the SCN and peripheral clocks. With respect to the physiological roles of AVP and AVP-expressing neurons, in addition to a sex-dependent action of AVP in the SCN, studies using AVP receptor knockout mice and mice genetically manipulated to alter the clock properties of AVP neurons are summarized here, highlighting its importance in maintaining circadian homeostasis and its potential as a target for therapeutic interventions.


Asunto(s)
Arginina Vasopresina , Ritmo Circadiano , Homeostasis , Núcleo Supraquiasmático , Animales , Arginina Vasopresina/metabolismo , Arginina Vasopresina/genética , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Homeostasis/genética , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Humanos , Ratones , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Neuronas/metabolismo , Ratones Noqueados , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo
13.
Oral Oncol ; 152: 106798, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615583

RESUMEN

Acquired radio-resistance is thought to be one of the main causes of recurrent metastasis after failure of nasopharyngeal carcinoma (NPC) radiotherapy, which may be related to X-ray-induced epithelial-mesenchymal transition (EMT) activation. The circadian clock gene, BMAL1, has been shown to correlate with the sensitivity of NPCs to radiotherapy, but the specific mechanism has not been reported. NPC cells were irradiated by conventional fractionation to generate radiotherapy-resistant cells. NPC cells with BMAL1 gene stabilization/overexpression and interference were obtained by lentiviral transfection. Western blotting, colony formation analysis, cell counting kit-8 assays, wound-healing tests, Transwell assays, flow cytometry, the EDU method, nuclear plasma separation experiments, HE staining, immunohistochemical staining and TUNEL staining were performed to explore the influence and molecular mechanism of the circadian clock gene, BMAL1, on NPC-acquired radio-resistance and EMT through in vitro and in vivo experiments. The results indicated that there was a gradual downregulation of BMAL1 gene protein expression during the routine dose induction of radio-resistance in NPC cells. EMT activation was present in the radiation-resistant cell line 5-8FR, and was accompanied by the significant enhancement of proliferation, migration and invasion. The BMAL1 gene significantly increased the radiosensitivity of the radiation-resistant cell line 5-8FR and reversed the acquired radio-resistance of NPCs, which was accomplished by inhibiting the TGF-ß1/Smads/Snail1 axis-mediated EMT.


Asunto(s)
Factores de Transcripción ARNTL , Transición Epitelial-Mesenquimal , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Tolerancia a Radiación , Factores de Transcripción de la Familia Snail , Factor de Crecimiento Transformador beta1 , Humanos , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/genética , Línea Celular Tumoral , Animales , Ratones , Proteínas Smad/metabolismo , Ratones Desnudos , Relojes Circadianos , Masculino
14.
Medicina (Kaunas) ; 60(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38674278

RESUMEN

Background: Insomnia is increasingly recognized for its marked impact on public health and is often associated with various adverse health outcomes, including cardiovascular diseases and mental health disorders. The aim of this study was to investigate the efficacy of pre-sleep dim light therapy (LT) as a non-pharmacological intervention for insomnia in adults, assessing its influence on sleep parameters and circadian rhythms. Methods: A randomized, open-label, two-arm clinical trial was conducted over two weeks with 40 participants aged 20-60 years, all of whom had sleep disorders (CRIS, KCT0008501). They were allocated into control and LT groups. The LT group received exposure to warm-colored light, minimizing the blue spectrum, before bedtime. The study combined subjective evaluation via validated, sleep-related questionnaires, objective sleep assessments via actigraphy, and molecular analyses of circadian clock gene expression in peripheral blood mononuclear cells. Baseline characteristics between the two groups were compared using an independent t-test for continuous variables and the chi-squared test for categorical variables. Within-group differences were assessed using the paired t-test. Changes between groups were analyzed using linear regression, adjusting for each baseline value and body mass index. The patterns of changes in sleep parameters were calculated using a linear mixed model. Results: The LT group exhibited significant improvements in sleep quality (difference in difference [95% CI]; -2.00 [-3.58, -0.43], and sleep efficiency (LT: 84.98 vs. control: 82.11, p = 0.032), and an advanced Dim Light Melatonin Onset compared to the control group (approximately 30 min). Molecular analysis indicated a significant reduction in CRY1 gene expression after LT, suggesting an influence on circadian signals for sleep regulation. Conclusions: This study provides evidence for the efficacy of LT in improving sleep quality and circadian rhythm alignment in adults with insomnia. Despite limitations, such as a small sample size and short study duration, the results underscore the potential of LT as a viable non-pharmacological approach for insomnia. Future research should expand on these results with larger and more diverse cohorts followed over a longer period to validate and further elucidate the value of LT in sleep medicine. Trial registration: The trial was registered with the Clinical Research Information Service (KCT0008501).


Asunto(s)
Fototerapia , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Adulto , Proyectos Piloto , Masculino , Femenino , Persona de Mediana Edad , Fototerapia/métodos , Estudios de Factibilidad , Resultado del Tratamiento , Actigrafía/métodos , Encuestas y Cuestionarios , Sueño/fisiología , Ritmo Circadiano/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-38432103

RESUMEN

Conopomorpha sinensis Bradley is the most detrimental pest to litchi and longan in China. Adult eclosion, locomotion, mating and oviposition of C. sinensis usually occur at night, regulated by a circadian rhythm. Nevertheless, our understanding of the linkages between adult circadian rhythms and clock genes remains inadequate. To address this gap, transcriptomic analysis was conducted on female and male heads (including antennae) of C. sinensis using the Illumina HiSeq 6000 platform to identify major circadian clock-related genes. The annotated sequences were analyzed by BLASTx, and candidate clock genes were classified based on conservation, predicted domain architectures, and phylogenetic analysis. The analysis revealed a higher conservation of these genes among the compared moths. Further, the expression profile analysis showed a significant spatiotemporal and circadian rhythmic accumulation of some clock genes during development. The candidate clock genes were predominantly expressed in the head, highlighting their crucial function in circadian rhythm regulation. Moreover, CsinPer, CsinTim1, and CsinCry1 displayed similar dynamic expressions with a peak expression level in the 4th age adults, suggesting their involvement in regulation of courtship and mating behaviors. The CsinPer and CsinTim1 mRNA oscillated strongly with a similar phase, containing a peak expression just before the female mating peak. This work will greatly contribute to understanding the circadian clock system of C. sinensis and provide valuable information for further studies of the molecular mechanisms involved in rhythmicity in fruit-boring pests.


Asunto(s)
Relojes Circadianos , Transcriptoma , Animales , Relojes Circadianos/genética , Femenino , Proteínas de Insectos/genética , Masculino , Cabeza , Mariposas Nocturnas/genética , Mariposas Nocturnas/fisiología , Filogenia , Ritmo Circadiano/genética , Perfilación de la Expresión Génica
16.
Chronobiol Int ; 41(3): 329-346, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516993

RESUMEN

The light/dark cycle, known as the photoperiod, plays a crucial role in influencing various physiological activities in fish, such as growth, feeding and reproduction. However, the underlying mechanisms of this influence are not fully understood. This study focuses on exploring the impact of different light regimes (LD: 12 h of light and 12 h of darkness; LL: 24 h of light and 0 h of darkness; DD: 0 h of light and 24 h of darkness) on the expression of clock genes (LcClocka, LcClockb, LcBmal, LcPer1, LcPer2) and the secretion of hormones (melatonin, GnRH, NPY) in the large yellow croaker, Larimichthys crocea. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assays were utilized to assess how photoperiod variations affect clock gene expression and hormone secretion. The results indicate that changes in photoperiod can disrupt the rhythmic patterns of clock genes, leading to phase shifts and decreased expression. Particularly under LL conditions, the pineal LcClocka, LcBmal and LcPer1 genes lose their rhythmicity, while LcClockb and LcPer2 genes exhibit phase shifts, highlighting the importance of dark phase entrainment for maintaining rhythmicity. Additionally, altered photoperiod affects the neuroendocrine system of L. crocea. In comparison to the LD condition, LL and DD treatments showed a phase delay of GnRH secretion and an acceleration of NPY synthesis. These findings provide valuable insights into the regulatory patterns of circadian rhythms in fish and may contribute to optimizing the light environment in the L. crocea farming industry.


Asunto(s)
Melatonina , Perciformes , Glándula Pineal , Animales , Ritmo Circadiano/fisiología , Fotoperiodo , Glándula Pineal/metabolismo , Melatonina/metabolismo , Expresión Génica , Perciformes/genética , Perciformes/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo
17.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338765

RESUMEN

Patients with active ulcerative colitis (UC) display a misalignment of the circadian clock, which plays a vital role in various immune functions. Our aim was to characterize the expression of clock and inflammation genes, and their mutual regulatory genes in treatment-naïve pediatric patients with UC. Using the Inflammatory Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) platform and R algorithms, we analyzed rectal biopsy transcriptomic data from two cohorts (206 patients with UC vs. 20 healthy controls from the GSE-109142 study, and 43 patients with UC vs. 55 healthy controls from the GSE-117993 study). We compared gene expression levels and correlation of clock genes (BMAL1, CLOCK, PER1, PER2, CRY1, CRY2), inflammatory genes (IκB, IL10, NFκB1, NFκB2, IL6, TNFα) and their mutual regulatory genes (RORα, RORγ, REV-ERBα, PGC1α, PPARα, PPARγ, AMPK, SIRT1) in patients with active UC and healthy controls. The clock genes BMAL1, CLOCK, PER1 and CRY1 and the inflammatory genes IκB, IL10, NFκB1, NFκB2, IL6 and TNFα were significantly upregulated in patients with active UC. The genes encoding the mutual regulators RORα, RORγ, PGC1α, PPARα and PPARγ were significantly downregulated in patients with UC. A uniform pattern of gene expression was found in healthy controls compared to the highly variable expression pattern in patients with UC. Among the healthy controls, inflammatory genes were positively correlated with clock genes and they all showed reduced expression. The difference in gene expression levels was associated with disease severity and endoscopic score but not with histological score. In patients with active UC, clock gene disruption is associated with abnormal mucosal immune response. Disrupted expression of genes encoding clock, inflammation and their mutual regulators together may play a role in active UC.


Asunto(s)
Proteínas CLOCK , Colitis Ulcerosa , Niño , Humanos , Factores de Transcripción ARNTL/genética , Ritmo Circadiano/fisiología , Colitis Ulcerosa/genética , Inflamación/genética , Interleucina-10 , Interleucina-6 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , PPAR alfa , PPAR gamma , Factor de Necrosis Tumoral alfa , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Criptocromos/genética , Criptocromos/metabolismo
18.
J Insect Physiol ; 153: 104615, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237657

RESUMEN

Many insects living in seasonal environments sense seasonal changes from photoperiod and appropriately regulate their development and physiological activities. Genetic researches have indicated the importance of a circadian clock system in photoperiodic time-measurement for photoperiodic regulations. However, most previous studies have focused on the effects on a single photoperiodic phenotype, without elucidating whether the circadian clock is involved in the core photoperiodic mechanism or only in the production of one target phenotype, such as diapause. Here, we focused on two different phenotypes in a bivoltine Kosetsu strain of the silkworm Bombyx mori, namely, embryonic diapause and larval development, and examined their photoperiodic responses and relationship to the circadian clock gene period. Photoperiod during the larval stage clearly influenced the induction of embryonic diapause and duration of larval development in the Kosetsu strain; short-day exposure leaded to the production of diapause eggs and shortened the larval duration. Genetic knockout of period inhibited the short-day-induced embryonic diapause. Conversely, in the period-knockout silkworms, the larval duration was shortened, but the photoperiodic difference was maintained. In conclusion, our results indicate that the period gene is not causally involved in the photoperiodic response of larval development, while that is essential for the short-day-induced embryonic diapause.


Asunto(s)
Bombyx , Diapausa de Insecto , Diapausa , Animales , Bombyx/genética , Diapausa de Insecto/fisiología , Óvulo , Ritmo Circadiano/fisiología , Fotoperiodo , Diapausa/genética , Larva/genética
19.
PNAS Nexus ; 3(1): pgad482, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239754

RESUMEN

Neuropathic pain often results from injuries and diseases that affect the somatosensory system. Disruption of the circadian clock has been implicated in the exacerbation of the neuropathic pain state. However, in this study, we report that mice deficient in a core clock component Period2 (Per2m/m mice) fail to develop tactile pain hypersensitivity even following peripheral nerve injury. Similar to male wild-type mice, partial sciatic nerve ligation (PSL)-Per2m/m male mice showed activation of glial cells in the dorsal horn of the spinal cord and increased expression of pain-related genes. Interestingly, α1D-adrenergic receptor (α1D-AR) expression was up-regulated in the spinal cord of Per2m/m mice, leading to increased production of 2-arachidonoylglycerol (2-AG), an endocannabinoid receptor ligand. This increase in 2-AG suppressed the PSL-induced tactile pain hypersensitivity. Furthermore, intraspinal dorsal horn injection of adeno-associated viral vectors expressing α1D-AR also attenuated pain hypersensitivity in PSL-wild-type male mice by increasing 2-AG production. Our findings reveal an uncovered role of the circadian clock in neuropathic pain disorders and suggest a link between α1D-AR signaling and the endocannabinoid system.

20.
Biochem Biophys Res Commun ; 691: 149315, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38043198

RESUMEN

OBJECT: To clarify the involvement of clock genes in the production of inflammatory mediators from RA-FLS, we examined the role of Bmal1, one of the master clock genes. METHODS: RA-FLSs were stimulated with IL-1ß (0, 20 ng/mL), IL-6 (0, 20 ng/mL), IL-17 (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expression of Bmal1, MMP-3, CCL2, IL-6, IL-7 and IL-15 by qPCR and immunofluorescence staining. After silencing Bmal1, RA-FLSs were stimulated with IL-1ß (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expressions of inflammatory mediators; MMP-3, CCL2, IL-6 and IL-15 by qPCR, ELISA and immunofluorescence staining. RESULTS: Bmal1 expressions were increased by IL-1ß, TNF-α and IFN-γ stimulations. Under stimulations with TNF-α, IL-1ß, and IFN-γ, mRNA and protein expressions of MMP-3, CCL2 and IL-6 were suppressed by siBmal1. CONCLUSION: Results indicate that Bmal1 contributes the production of MMP-3, CCL2, and IL-6 from RA-FLS, implying Bmal1 is involved in the pathogenesis of RA by regulating the inflammation.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Sinoviocitos/metabolismo , Membrana Sinovial/metabolismo , Interleucina-15/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mediadores de Inflamación/metabolismo , Artritis Reumatoide/patología , Fibroblastos/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA