Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Turk J Chem ; 48(4): 550-567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296786

RESUMEN

In this study, we developed a heterojunction photocatalyst, namely nitrogen-doped carbon quantum dots/titanium dioxide (N-CQDs/TiO2), for the effective and sustainable treatment of ciprofloxacin (CIP) antibiotic in aqueous solution. First, N-CQDs were prepared from a chitosan biopolymer with a green, facile, and effective hydrothermal carbonization technique and then anchored on the TiO2 surface via a hydrothermal process. The morphological, structural, and optical properties of the as-prepared materials were characterized by using advanced analytical techniques. The impacts of the mass percentage of N-CQDs, catalyst and CIP concentration, and pH on photocatalytic CIP degradation were investigated in depth. Comparative analyses were performed to evaluate different processes including adsorption, photolysis, and photocatalysis for the removal of CIP with TiO2 and N-CQDs/TiO2. The results revealed that N-CQDs/TiO2 exhibited the highest CIP removal efficiency of up to 83.91% within 120 min using UVA irradiation under optimized conditions (10 mg/L CIP, 0.4 g/L catalyst, and pH 5). Moreover, the carbon source used in the fabrication of N-CQDs was also considered, and lower removal efficiency was obtained when glucose was used as a carbon source instead of chitosan. This excellent improvement in CIP degradation was attributed to the ideal separation and migration of photogenerated carriers, strong redox capability, and high generation of reactive oxygen species provided by the successful construction of the N-CQDs/TiO2 S-scheme heterojunction. Scavenger experiments indicated that h+ and •OH reactive oxygen species were the predominant factors for CIP elimination in water. Overall, this study presents a green synthesis approach for N-CQDs/TiO2 heterojunction photocatalysts using natural materials, demonstrating potential as a cost-effective and efficient method for pharmaceutical degradation in water treatment applications.

2.
Environ Pollut ; 360: 124683, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111527

RESUMEN

Metal-nitrogen (M-N) coupling has shown promise as a catalytic active component for various reactions. However, the regulation of heterogeneous catalytic materials with M-N coupling for peroxymonosulfate (PMS) activation to enhance the degradation efficiency and reusability of antibiotics remains a challenge. In this study, an efficient modulation of M-N coupling was achieved through the incorporation of Cu into Co4N to form a Cu-Co4N composite with sea urchin-like morphology assembled by numerous nano-needles using hydrothermal and nitriding processes. This modulation led to enhanced PMS activation for ciprofloxacin (CIP) degradation. The Cu-Co4N/PMS system demonstrated exceptional removal efficiency with a degradation rate of 95.85% within 30 min and can be reused for five time without obvious loss of its initial activity. Additionally, the catalyst displayed a high capacity for degrading various challenging organic pollutants, as well as remarkable stability, resistance to interferences, and adaptability to pH changes. The synergistic effect between Co and Cu facilitated multiple redox cycles, resulting in the generation of reactive oxidized species. The primary active species involved in the catalytic degradation process included 1O2, SO4•-, O2•-, •OH, and e-, with 1O2 and SO4•- playing the most significant roles. The degradation pathways and toxicity of the intermediates for CIP were unveiled. This study offers valuable insights into the regulation of M-N centers for degrading antibiotics through PMS activation.


Asunto(s)
Ciprofloxacina , Cobalto , Cobre , Nitrógeno , Peróxidos , Contaminantes Químicos del Agua , Ciprofloxacina/química , Cobre/química , Cobalto/química , Peróxidos/química , Nitrógeno/química , Contaminantes Químicos del Agua/química , Catálisis , Antibacterianos/química , Oxidación-Reducción
3.
J Hazard Mater ; 476: 134982, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38917629

RESUMEN

The propagation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) induced by the release of antibiotics poses great threats to ecological safety and human health. In this study, periodate (PI)/FeS2/simulated sunlight (SSL) system was employed to remove representative ARB, ARGs and antibiotics in water. 1 × 107 CFU mL-1 of gentamycin-resistant Escherichia coli was effectively disinfected below limit of detection in PI/FeS2/SSL system under different water matrix and in real water samples. Sulfadiazine-resistant Pseudomonas and Gram-positive Bacillus subtilis could also be efficiently sterilized. Theoretical calculation showed that (110) facet was the most reactive facet on FeS2 to activate PI for the generation of reactive species (·OH, ·O2-, h+ and Fe(IV)=O) to damage cell membrane and intracellular enzyme defense system. Both intracellular and extracellular ARGs could be degraded and the expression levels of multidrug resistance-related genes were downregulated during the disinfection process. Thus, horizontal gene transfer (HGT) of ARB was inhibited. Moreover, PI/FeS2/SSL system could disinfect ARB in a continuous flow reactor and in an enlarged reactor under natural sunlight irradiation. PI/FeS2/SSL system could also effectively degrade the HGT-promoting antibiotic (ciprofloxacin) via hydroxylation and ring cleavage process. Overall, PI/FeS2/SSL exhibited great promise for the elimination of antibiotic resistance from water.


Asunto(s)
Antibacterianos , Ciprofloxacina , Farmacorresistencia Bacteriana , Compuestos Ferrosos , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Farmacorresistencia Bacteriana/genética , Luz Solar , Desinfección/métodos , Purificación del Agua/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Contaminantes Químicos del Agua , Microbiología del Agua , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de la radiación , Transferencia de Gen Horizontal
4.
Environ Sci Pollut Res Int ; 31(16): 23924-23941, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430437

RESUMEN

In response to the escalating concerns over antibiotics in aquatic environments, the photo-Fenton reaction has been spotlighted as a promising approach to address this issue. Herein, a novel heterogeneous photo-Fenton catalyst (Fe3O4/WPC) with magnetic recyclability was synthesized through a facile two-step process that included in situ growth and subsequent carbonization treatment. This catalyst was utilized to expedite the photocatalytic decomposition of ciprofloxacin (CIP) assisted by H2O2. Characterization results indicated the successful anchoring of MIL-101(Fe)-derived spindle-like Fe3O4 particles in the multi-channeled wood-converted porous carbon (WPC) scaffold. The as-synthesized hybrid photocatalysts, boasting a substantial specific surface area of 414.90 m2·g-1 and an excellent photocurrent density of 0.79 µA·cm-2, demonstrated superior photo-Fenton activity, accomplishing approximately 100% degradation of CIP within 120 min of ultraviolet-light exposure. This can be attributed to the existence of a heterojunction between Fe3O4 and WPC substrate that promotes the migration and enhances the efficient separation of photogenerated electron-hole pairs. Meanwhile, the Fe(III)/Fe(II) redox circulation and mesoporous wood carbon in the catalyst synergistically enhance the utilization of H2O and accelerate the formation of •OH radicals, leading to heightened degradation efficiency of CIP. Experiments utilizing chemical trapping techniques have demonstrated that •OH radicals are instrumental in the CIP degradation process. Furthermore, the study on reusability indicated that the efficiency in removing CIP remained at 89.5% even through five successive cycles, indicating the structural stability and excellent recyclability of Fe3O4/WPC. This research presented a novel pathway for designing magnetically reusable MOFs/wood-derived composites as photo-Fenton catalysts for actual wastewater treatment.


Asunto(s)
Carbono , Compuestos Férricos , Estructuras Metalorgánicas , Compuestos Férricos/química , Ciprofloxacina/química , Peróxido de Hidrógeno/química , Porosidad , Madera , Catálisis
5.
J Environ Manage ; 352: 120044, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38184867

RESUMEN

The increasing contamination of water systems by antibiotics and heavy metals has become a growing concern. The intimately coupled photocatalysis and biodegradation (ICPB) approach offers a promising strategy for the effective removal of mixed pollutants. Despite some prior research on ICPB applications, the mechanism by which ICPB eliminates mixed pollutants remains unclear. In our current study, the ICPB approach achieved approximately 1.53 times the degradation rate of ciprofloxacin (CIP) and roughly 1.82 times the reduction rate of Cr (VI) compared to photocatalysis. Remarkably, after 30 days, the ICPB achieved a 96.1% CIP removal rate, and a 97.8% reduction in Cr (VI). Our investigation utilized three-dimensional fluorescence analysis and photo-electrochemical characterization to unveil the synergistic effects of photocatalysis and biodegradation in removal of CIP and Cr (VI). Incorporation of B-Bi3O4Cl (B-BOC) photocatalyst facilitated electron-hole separation, leading to production of ·O2-, ·OH, and h+ species which interacted with CIP, while electrons reduced Cr (VI). Subsequently, the photocatalytic products were biodegraded by a protective biofilm. Furthermore, we observed that CIP, acting as an electron donor, promoted the reduction of Cr (VI). The microbial communities revealed that the number of bacteria favoring pollutant removal increased during ICPB operation, leading to a significant enhancement in performance.


Asunto(s)
Ciprofloxacina , Contaminantes Ambientales , Antibacterianos , Biodegradación Ambiental , Cromo/química , Catálisis
6.
Ultrason Sonochem ; 103: 106770, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38241944

RESUMEN

Designing catalysts that can effectively make use of renewable energy benefits to solve the current challenges of environmental pollution and increasing energy demands. Piezo-photocatalysis that can utilize solar energy and natural vibration-energy has emerged as a "green" technique. In this work, we fabricated BiFeO3/C nano composites that can harvest solar and vibration energies and degrade organic pollutants. The incorporated carbon quantum dots bring about more efficient visible light absorbance and separation of photoinduced electron-hole pairs. The piezoelectric polarization further suppresses the recombination of photoinduced electron-hole pairs. The catalysts own higher reaction rates in piezo-photocatalysis and the BiFeO3/C-0.12 shows the highest degradation efficiency (k-value of 0.0835 min-1).

7.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138583

RESUMEN

The development of an efficient catalyst with excellent performance using agricultural biomass waste as raw materials is highly desirable for practical water pollution control. Herein, nano-sized, metal-decorated biochar was successfully synthesized with in situ chemical deposition at room temperature. The optimized BC-Cu (1:4) composite exhibited excellent peroxymonosulfate (PMS) activation performance due to the enhanced non-radical pathway. The as-prepared BC-Cu (1:4) composite displays a superior 99.99% removal rate for ciprofloxacin degradation (initial concentration 20 mg·L-1) within 40 min. In addition, BC-Cu (1:4) has superior acid-base adaptability (3.98~11.95) and anti-anion interference ability. The trapping experiments and identification of reactive oxidative radicals confirmed the crucial role of enhanced singlet oxygen for ciprofloxacin degradation via a BC-Cu (1:4)/PMS system. This work provides a new idea for developing highly active, low-cost, non-radical catalysts for efficient antibiotic removal.


Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Cobre , Agua , Contaminantes Químicos del Agua/análisis , Peróxidos
8.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298517

RESUMEN

In recent years, organic pollutants have become a global problem due to their negative impact on human health and the environment. Photocatalysis is one of the most promising methods for the removal of organic pollutants from wastewater, and oxide semiconductor materials have proven to be among the best in this regard. This paper presents the evolution of the development of metal oxide nanostructures (MONs) as photocatalysts for ciprofloxacin degradation. It begins with an overview of the role of these materials in photocatalysis; then, it discusses methods of obtaining them. Then, a detailed review of the most important oxide semiconductors (ZnO, TiO2, CuO, etc.) and alternatives for improving their photocatalytic performance is provided. Finally, a study of the degradation of ciprofloxacin in the presence of oxide semiconductor materials and the main factors affecting photocatalytic degradation is carried out. It is well known that antibiotics (in this case, ciprofloxacin) are toxic and non-biodegradable, which can pose a threat to the environment and human health. Antibiotic residues have several negative impacts, including antibiotic resistance and disruption of photosynthetic processes.


Asunto(s)
Contaminantes Ambientales , Nanoestructuras , Óxido de Zinc , Humanos , Ciprofloxacina/química , Óxido de Zinc/química , Nanoestructuras/química , Antibacterianos/farmacología , Antibacterianos/química , Óxidos , Catálisis
9.
Molecules ; 28(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37299012

RESUMEN

A chromate of copper and cobalt (Φy) was synthesized and characterized. Φy activated peroxymonosulfate (PMS) to degrade ciprofloxacin (CIP) in water. The Φy/PMS combination showed a high degrading capability toward CIP (~100% elimination in 15 min). However, Φy leached cobalt (1.6 mg L-1), limiting its use for water treatment. To avoid leaching, Φy was calcinated, forming a mixed metal oxide (MMO). In the combination of MMO/PMS, no metals leached, the CIP adsorption was low (<20%), and the action of SO4•- dominated, leading to a synergistic effect on pollutant elimination (>95% after 15 min of treatment). MMO/PMS promoted the opening and oxidation of the piperazyl ring, plus the hydroxylation of the quinolone moiety on CIP, which potentially decreased the biological activity. After three reuse cycles, the MMO still presented with a high activation of PMS toward CIP degradation (90% in 15 min of action). Additionally, the CIP degradation by the MMO/PMS system in simulated hospital wastewater was close to that obtained in distilled water. This work provides relevant information on the stability of Co-, Cu-, and Cr-based materials under interaction with PMS and the strategies to obtain a proper catalyst to degrade CIP.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Antibacterianos/farmacología , Cobre , Contaminantes Químicos del Agua/análisis , Peróxidos , Óxidos , Ciprofloxacina/farmacología , Cobalto
10.
Int J Biol Macromol ; 242(Pt 4): 125137, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276907

RESUMEN

Chitosan modified AGQD (amine modified graphene oxide quantum dots) and then combined with H3PW12O40 to obtain CSx@AGQD-HPW12 via facile process and applied for CIP removal through pre-adsorption and photocatalytic processes. The application of chitosan could regulate the morphology and photoelectric properties effectively. CS0.5@AGQD-HPW12 was found to have the optimal CIP removal performance among all the products, the corresponding adsorption removal efficiency and pre-adsorption photocatalysis process were 72.1 % and 98.8 %, respectively. Results of toxicity assessment confirmed photocatalytic degradation process could mitigate the ecotoxicity of CIP effectively. The optimal TOC (total organic carbon) removal efficiency was about 52.1 %. Possible pathways for CIP degradation and reaction mechanism were proposed based on the results of intermediates analysis and trapping experiments. This demonstrated a novel approach to chitosan application and an eco-friendly way to remove CIP by adsorption-photocatalysis process.


Asunto(s)
Quitosano , Puntos Cuánticos , Contaminantes Químicos del Agua , Ciprofloxacina/química , Antibacterianos/química , Quitosano/química , Contaminantes Químicos del Agua/química , Adsorción
11.
Environ Res ; 231(Pt 2): 116218, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224952

RESUMEN

The accumulation of antibiotics in aquatic environments poses a serious threat to human health. Photocatalytic degradation is a promising method for removing antibiotics from water, but its practical implementation requires improvements in photocatalyst activity and recovery. Here, a novel graphite felt-supported MnS/Polypyrrole composite (MnS/PPy/GF) was constructed to achieve effective adsorption of antibiotics, stable loading of photocatalyst, and rapid separation of spatial charge. Systematic characterization of composition, structure and photoelectric properties indicated the efficient light absorption, charge separation and migration of the MnS/PPy/GF, which achieved 86.2% removal of antibiotic ciprofloxacin (CFX), higher than that of MnS/GF (73.7%) and PPy/GF (34.8%). The charge transfer-generated 1O2, energy transfer-generated 1O2, and photogenerated h+ were identified as the dominant reactive species, which mainly attacked the piperazine ring in the photodegradation of CFX by MnS/PPy/GF. The •OH was confirmed to participate in the defluorination of CFX via hydroxylation substitution. The MnS/PPy/GF-based photocatalytic process could ultimately achieve the mineralization of CFX. The facile recyclability, robust stability, and excellent adaptability to actual aquatic environments further confirmed MnS/PPy/GF is a promising eco-friendly photocatalyst for antibiotic pollution control.


Asunto(s)
Ciprofloxacina , Grafito , Humanos , Ciprofloxacina/química , Grafito/química , Polímeros/química , Pirroles/química , Antibacterianos/química
12.
Environ Sci Pollut Res Int ; 30(24): 65602-65617, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37085681

RESUMEN

Aquatic ecology has been greatly threatened by the discharge of effluents of textile and antibiotic industries into natural waters. Herein, an efficient and easily recycled reduced graphene oxide/zirconium oxide nanocomposite has been synthesized using banana peel extract (abbreviated as rGO-ZrO2 in this work). The X-ray diffraction (XRD), field emission scanning electronic microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), UV-visible diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy were used to analyze the synthesized material. The as-prepared rGO-ZrO2 nanocomposite was employed as a photocatalyst for the decomposition of rhodamine blue (RhB) and crystal violet (CV) dyes, and ciprofloxacin (CIP) antibiotic by illumination with direct sunlight. The RhB and CV were degraded to maximum extent of around 86 and 90%, respectively, over the rGO-ZrO2 nanocomposite after exposure to direct sunlight for 120 min. On the other hand, the degradation of CIP was approximately 93.1% over the rGO-ZrO2 nanocomposite in 240 min under same experimental conditions. Further studies were performed regarding the role of parameters like pH, catalyst dose, and scavengers, in order to understand the superiority of rGO-ZrO2 nanocomposite in degrading organic pollutants. Moreover, the intermediate products and plausible CIP degradation mechanisms were examined using liquid chromatography-mass spectrometry (LC-MS). Moreover, the catalyst was easily separated from the solution and demonstrated good stability and reusability. The RhB, CV, and CIP removal efficiency were 80%, 83%, and 88%, respectively, after five cycles.


Asunto(s)
Nanocompuestos , Luz Solar , Ciprofloxacina , Antibacterianos , Nanocompuestos/química , Colorantes
13.
Small ; 19(18): e2207636, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36772900

RESUMEN

Herein, a twisty C-TiO2 /PCN (CNT) Step-scheme (S-scheme) heterojunction is fabricated and applied to degrade ciprofloxacin (CIP) with the assistance of ultrasonic vibration and visible light irradiation. The nitrogen-rich twisty polymeric carbon nitride (PCN) can not only induce a non-centrosymmetric structure with enhanced polarity for a better piezoelectric effect but also provide abundant lone pair electrons to promote n→π* transition during photocatalysis. Its hybridization with C-TiO2 particles can construct S-scheme heterojunction in CNT. During the piezo-photocatalysis, the strain-induced polarization electric field in the heterojunction can regulate the electron migration between the two components, resulting in a more effective CIP degradation. With the synergistic effect of ultrasonic vibration and visible light irradiation, the reaction rate constant of CIP degradation by CNT increases to 0.0517 min-1 , which is 1.86 times that of photocatalysis and 6.46 times that of ultrasound. This system exhibits a stable CIP decomposition efficiency under the interference of various environmental factors. In addition, the in-depth investigation found that three pathways and 12 major intermediates with reduced toxicity are produced after the reaction. Hopefully, the construction of this twisty CNT S-scheme heterojunction with enhanced piezo-photocatalytic effect offers inspiration for the design of environmentally functional materials.

14.
J Colloid Interface Sci ; 634: 255-267, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535163

RESUMEN

Mn and N co-doped biochar (Mn-N-TS) was prepared as an effective catalyst to activate peroxymonosulfate (PMS) for ciprofloxacin (CIP) degradation. As opposed to Mn-TS and N-TS, Mn-N-TS had more active sites containing N and Mn, as well as a greater specific surface area (923.733 m2 g-1). The Mn-N-TS exhibited excellent PMS activation ability. In the Mn-N-TS/PMS system, the CIP removal efficiency was 91.9% in 120 min. Mn and N co-doping could accelerate electron transfer between CIP and PMS molecules. Simultaneously, defect sites, graphitic N, pyridinic N, C═O groups, and Mn(II)/Mn(III)/Mn(IV) redox cycles acted as active sites to activate PMS and generate free radicals (OH, SO4- and 1O2). Furthermore, the Mn-N-TS/PMS system could effectively degrade CIP in a wide pH range, background substances, and actual water. Finally, a probable mechanism of PMS activation by Mn-N-TS was proposed. In conclusion, this work gave a novel direction for the rational design of Mn and N co-doped biochar.


Asunto(s)
Ciprofloxacina , Peróxidos , Porosidad , Peróxidos/química , Oxidación-Reducción
15.
Environ Res ; 212(Pt E): 113635, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688220

RESUMEN

The use of visible-driven photocatalysts has fascinated attention as a capable and sustainable approach for wastewater remediation. In this work, BiOBr/carbon quantum dot (CQDs)/saponite composites (CQDs/Clay@BiOBr) were fabricated via hydrothermally using two different CQDs/Clay precursors (in-situ synthesis (IS) and physical mixing (PM)). The obtained products were characterized, and the photocatalytic performances of the prepared samples were evaluated in the photocatalytic decomposition of emerging ciprofloxacin (CIP) pharmaceutical waste. The highest CIP mineralization performance was achieved when a combination of BiOBr and CQDs/Clay (IS) with the appropriate proportion because the strong adhesion between CQDs and clay generate a great heterojunction in the composite. The stronger interaction of CQDs and better distribution of CQDs on the surface of clay in the CQDs/Clay (IS) enhanced the interaction of BiOBr and CQDs, and avoided the re-agglomeration of excess of CQDs on surface of BiOBr which reduce the active surface to receive the light and react with CIP. The ultrafast degradation rate of the optimized CQDs/Clay@BiOBr composite was better compared to others. The significant improvement in the CIP degradation efficiency of the CQDs/Clay@BiOBr composite was attributed to the excellent separation and transportation of photogenerated electrons and holes, as confirmed by photoluminescence, photocurrent density, and electrochemical impedance spectroscopy results. Moreover, the photocatalytic degradation mechanism of CIP in the CQDs/Clay@BiOBr composite was proposed based on the electronic states of each material in the composite and on a scavenger test. Thus, the proposed CQDs/Clay@BiOBr composite can be employed as a potential visible-light-driven photocatalyst for the decomposition of organic contaminants in wastewater.


Asunto(s)
Puntos Cuánticos , Silicatos de Aluminio , Bismuto , Carbono , Catálisis , Ciprofloxacina , Arcilla , Luz , Puntos Cuánticos/química , Aguas Residuales
16.
Chemosphere ; 305: 135377, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35738411

RESUMEN

In this study, the following three experimental devices were operated for 70 days for the treatment of ciprofloxacin pollutants in wastewater: constructed wetlands (CW), constructed wetland-microbial fuel cells (EG), and constructed wetland-microbial fuel cells with new iron-carbon fillers (TPFC). The water quality, power generation capacity, microbial community structure, and changes in the resistance gene qnrs were studied. The efficiency of removal of total phosphate in the TPFC (97.1% ± 2.5%) was significantly higher than that in the EG (51.6% ± 4.8%) and the CW (68.1% ± 2.9%). The efficiency of removal of ciprofloxacin was also significantly higher (TPFC: 91.2% ± 3.4%, EG: 82.1% ± 2.3%, and CW: 75.1% ± 5.6%) (P < 0.05). The voltage of TPFC reached 300.16 ± 12.12 mV, which was apparently greater than that of EG (180.36 ± 16.73 mV) (P < 0.05), possibly because of the higher abundance of microorganisms such as Burkholderiaceae, Hydrogenophaga, and Proteobacteria. There were more copies of the resistance gene qnrs (TPFC: 7.74/µL, EG: 5.52/µL, and CW: 2.65/µL), which may be associated with stronger resistance; therefore, the efficiency of removal of ciprofloxacin was higher in the TPFC. TPFCs are a promising way to remove ciprofloxacin in wastewater.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Carbono , Ciprofloxacina , Electricidad , Electrodos , Hierro , Aguas Residuales , Humedales
17.
Water Res ; 219: 118558, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35569278

RESUMEN

The widespread distribution of persistent organic pollutants (POPs) in natural waters has aroused global concern due to their potential threat to the aquatic environment. Photocatalysis represents a promising mean to remediate polluted waters with the simple assistance of solar energy. Herein, we fabricated a Co-Cl bond reinforced CoAl-LDH/Bi12O17Cl2 heterogeneous photocatalyst to investigate the feasibility of photocatalysis to treat POPs-polluted water under environmental conditions. The optimum CoAl-LDH/Bi12O17Cl2 (5-LB) composite photocatalyst exhibited excellent photocatalytic performance, which could degrade 92.47 % of ciprofloxacin (CIP) and 95 % of bisphenol A (BPA) with 2h of actual solar light irradiation in Changsha, China (N 28.12 °, E 112.59 °). In view of the synergistic influence of water constituents, various water matrices greatly affected the degradation rate of CIP (BPA), with the degradation efficiency of 82.17% (84.37%) in tap water, 69.67% (71.63%) in wastewater effluent, and 44.07% (67.7%) in wastewater inflow. The results of electron spin resonance, and chemical trapping experiment, HPLC-MS and density functional theory calculation reflected that the degradation of CIP was mainly attributed to h+ and 1O2 attacking the active atoms of CIP molecule with high Fukui index. Furthermore, the non-toxicity of both 5-LB photocatalyst and treated CIP solution was proved by E.coli and B.subtilis cultivation, which further demonstrated the feasibility of the 5-LB to treat POPs in real water under irradiation of solar light.


Asunto(s)
Carbón Mineral , Contaminantes Orgánicos Persistentes , Catálisis , Ciprofloxacina , Escherichia coli , Luz , Aguas Residuales , Agua
18.
Chemosphere ; 301: 134684, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35472610

RESUMEN

Development of efficient photocatalysts for efficient recalcitrant organic pollutants degradation is of great significance. Herein, the step-doped disulfide vacancies S-scheme Cu3SnS4/L-BiOBr (CTS/L-BiOBr) heterojunction photocatalyst was prepared for ciprofloxacin (CIP) degradation. X-ray photoelectron spectroscopy (XPS) analysis, ultraviolet photo-electron spectroscopy (UPS) analysis, band structure and dominant radicals' identification together verified that the transfer of photogenerated carriers conformed to the S-scheme mechanism. Benefited from the interfacial electric field (IEF) of the S-scheme heterojunction and incorporation of L-cysteine with introducing S-vacancies and surface functional groups (-NH2, -COO-), photogenerated charges generation and separation of the CTS/L-BiOBr(10) were greatly improved. With ·OH and h+ as dominant reactive species, CIP removal reached 93% using CTS/L-BiOBr(10) within 180 min of visible light irradiation, which was 3.5 times and 2.6 times of pristine Cu3SnS4 and L-BiOBr, respectively. Moreover, possible CIP degradation pathways were proposed and the degradation intermediates ecotoxicity were evaluated. This study could provide reference for designing efficient S-scheme photocatalysts for recalcitrant wastewater treatment.


Asunto(s)
Ciprofloxacina , Disulfuros , Bismuto/química , Catálisis
19.
J Hazard Mater ; 434: 128879, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427970

RESUMEN

Pharmaceuticals are necessary to be removed from environment. Herein TiO2 incorporated biochar made from pyrolysis of agricultural wastes was encapsulated into chitosan to obtain a novel hydrogel beads. This hydrogel beads executed a dual role as both adsorbent and sonocatalyst, which proved to be suitable for the removal of antibiotic ciprofloxacin (CIP) from water. The results showed that adsorption of CIP followed pseudo first order kinetics model and Langmuir adsorption isotherm model, having maximum adsorption at pH 9. Whereas the degradation was more efficient at pH 6 due to greater standard potential for •OH/H2O in acidic media. The degradation was maximum at 150 W of ultrasonic power, then decreased in presence of dissimilar electrolytes and even reduced to 0 in presence of Na3PO4. Different quenchers such as benzoquinone (BQ), Triethanolamine (TEA) and isopropyl alcohol (IPA) reduced degradation efficiency (DE) and mineralization efficiency (ME). The DE was decreased from 85.23% to 81.50% (BQ), 74.27% (TEA), and 61.77% (IPA) within 25 min. The prepared sonocatalyst was capable of regeneration with DE, remaining sufficiently high (62%) even after four regeneration steps. These results indicate that titanium-biochar/chitosan hydrogel beads (TBCB) are durable and effective for long-term CIP removal.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Ciprofloxacina , Hidrogeles , Concentración de Iones de Hidrógeno , Cinética , Titanio
20.
Chemosphere ; 297: 134023, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35227750

RESUMEN

The present study discusses the ammonia (NH3) sensing characteristics, photocatalytic degradation of emerging pollutants, and peroxidase mimic activity of multifunctional multi-walled carbon nanotube-tungsten oxide nanocomposite (MWCNT/WO3) prepared by conventional solvothermal method. The prepared MWCNT/WO3 nanocomposites were characterized by various analytical techniques like XRD, Raman, XPS, N2 adsorption, FESEM with elemental analysis and diffuse reflection spectroscopy. The prepared 1% MWCNT/WO3 nanocomposite showed better gas sensing performance for the NH3 vapors at 10-100 ppm than the pristine WO3 and the response and recover time of about 13 and 15s towards 20 ppm of ammonia (NH3) was achieved. The photocatalytic activity of MWCNT/WO3 towards organic dyes such as Rhodamine-B (Rh.B) methylene blue (MB) and pharmaceutical compound ciprofloxacin (CIP) were studied and achieved above 90% degradation at 160 min for CIP and 60 min for MB and Rho-B respectively. The radicle scavenging activity for MWCNT/WO3 nanocomposite showed the predominant formation of hydroxyl (OH•) and superoxide radicle (•O2-). Further, the MWCNT/WO3 nanocomposite showed peroxidase mimic activity and exhibit the limit of detection (LOD) of about 321 nM. From the overall analysis, MWCNT/WO3 hybrid seems to have potential characteristics that can be explored for multiple functional applications.


Asunto(s)
Amoníaco , Ciprofloxacina , Colorantes , Azul de Metileno/química , Peroxidasa , Peroxidasas , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA