Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Shokuhin Eiseigaku Zasshi ; 65(3): 72-77, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39034139

RESUMEN

Ciguatera poisoning (CP) is one of the most frequent seafood poisonings across the globe. CP results from the consumption of fish flesh that has accumulated principal toxins known as ciguatoxins (CTXs), and it mainly occurs in tropical and subtropical regions. In Japan, incidents of CP have been reported primarily from Okinawa and Amami Islands in the subtropical area. Meanwhile, there have also been reports from Mainland sporadically. Since the amount of CTXs contained in fish flesh is extremely low, a highly sensitive detection method by LC-MS/MS is required. But the currently reported detection method is applicable only to specific equipment, and many laboratories have difficulty to respond CP. In this study, to prepare for the risk of nationwide CP, we researched a universal analytical method for CTXs based on LC-MS/MS. Using a water/acetonitrile mobile phase supplemented with lithium hydroxide and formic acid gave rise to prominent peaks of the stable [M+Li]+ions. As the [M+Li]+ions did not produce valid product ions even with high collision energy, the [M+Li]+ions of each analog were set for both precursor and product ions ([M+Li]+>[M+Li]+) and monitored under the multiple reaction monitoring (MRM) mode. With the method described above, analyses of nine CTX congeners were carried out. The limit of detection (LOD, S/N>5) and quantitation (LOQ, S/N>10) were estimated as 0.005-0.030 ng/mL and 0.010-0.061 ng/mL, respectively. When the 1 mL of extract solution is prepared from 5 g of the fish tissue, the LOD and LOQ will be at 0.001-0.006 µg/kg and 0.002-0.012 µg/kg, respectively. This result indicates that we could detect the required level of 0.175 µg/kg CTX1B equivalent in fish flesh which is recommended for safe consumption in Japan. This method is considered to be a universal analytical method without depending on the specific equipment. Thus it could contribute to improving the CP investigations in nationwide laboratories.


Asunto(s)
Ciguatoxinas , Análisis de los Alimentos , Contaminación de Alimentos , Animales , Intoxicación por Ciguatera/diagnóstico , Ciguatoxinas/análisis , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Japón , Cromatografía Líquida con Espectrometría de Masas , Alimentos Marinos/análisis , Espectrometría de Masas en Tándem/métodos
2.
Animals (Basel) ; 14(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38929377

RESUMEN

Ciguatera is a foodborne disease caused by ciguatoxins (CTXs), produced by dinoflagellates (genera Gambierdiscus and Fukuyoa), which bioaccumulate in fish through the food web, causing poisoning in humans. Currently, the physiological mechanisms of the species with the highest amount of toxins in their adult stage of life that are capable of causing these poisonings are poorly understood. Dusky grouper (Epinephelus marginatus) is a relevant fishing species and is part of the CTX food chain in the Canary Islands. This study developed an experimental model of dietary exposure featuring adult dusky groupers with two diets of tissue naturally contaminated with CTXs (amberjack and moray eel flesh) with two different potential toxicities; both groups were studied at different stages of exposure (4, 6, 10, 12, and 18 weeks). The results showed that this species did not show changes in its behavior due to the provided feeding, but the changes were recorded in biochemical parameters (mainly lipid and hepatic metabolism) that may respond to liver damage and alterations in the homeostasis of the fish; more research is needed to understand histopathological and cytotoxic changes.

3.
Toxins (Basel) ; 16(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38668614

RESUMEN

Ciguatera Poisoning (CP) is an illness associated with the consumption of fish contaminated with potent natural toxins found in the marine environment, commonly known as ciguatoxins (CTXs). The risk characterization of CP has become a worldwide concern due to the widespread expansion of these natural toxins. The identification of CTXs is hindered by the lack of commercially available reference materials. This limitation impedes progress in developing analytical tools and conducting toxicological studies essential for establishing regulatory levels for control. This study focuses on characterizing the CTX profile of an amberjack responsible for a recent CP case in the Canary Islands (Spain), located on the east Atlantic coast. The exceptional sensitivity offered by Capillary Liquid Chromatography coupled with High-Resolution Mass Spectrometry (cLC-HRMS) enabled the detection, for the first time in fish contaminated in the Canary Islands, of traces of an algal ciguatoxin recently identified in G. silvae and G. caribeaus from the Caribbean Sea. This algal toxin was structurally characterized by cLC-HRMS being initially identified as C-CTX5. The total toxin concentration of CTXs was eight times higher than the guidance level proposed by the Food and Drug Administration (0.1 ng C-CTX1/g fish tissue), with C-CTX1 and 17-hydroxy-C-CTX1 as major CTXs.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Ciguatoxinas/análisis , España , Animales , Cromatografía Liquida , Espectrometría de Masas
4.
Toxins (Basel) ; 16(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38668595

RESUMEN

Ciguatera poisoning (CP) is the most common type of marine biotoxin food poisoning worldwide, and it is caused by ciguatoxins (CTXs), thermostable polyether toxins produced by dinoflagellate Gambierdiscus and Fukuyoa spp. It is typically caused by the consumption of large fish high on the food chain that have accumulated CTXs in their flesh. CTXs in trace amounts are found in natural samples, and they mainly induce neurotoxic effects in consumers at concentrations as low as 0.2 µg/kg. The U.S. Food and Drug Administration has established CTX maximum permitted levels of 0.01 µg/kg for CTX1B and 0.1 µg/kg for C-CTX1 based on toxicological data. More than 20 variants of the CTX1B and CTX3C series have been identified, and the simultaneous detection of trace amounts of CTX analogs has recently been required. Previously published works using LC-MS/MS achieved the safety levels by monitoring the sodium adduct ions of CTXs ([M+Na]+ > [M+Na]+). In this study, we optimized a highly sensitive method for the detection of CTXs using the sodium or lithium adducts, [M+Na]+ or [M+Li]+, by adding alkali metals such as Na+ or Li+ to the mobile phase. This work demonstrates that CTXs can be successfully detected at the low concentrations recommended by the FDA with good chromatographic separation using LC-MS/MS. It also reports on the method's new analytical conditions and accuracy using [M+Li]+.


Asunto(s)
Ciguatoxinas , Espectrometría de Masas en Tándem , Ciguatoxinas/análisis , Cromatografía Liquida , Litio/análisis , Intoxicación por Ciguatera , Contaminación de Alimentos/análisis , Límite de Detección , Animales
5.
Mar Drugs ; 22(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38535460

RESUMEN

The genus Gambierdiscus produces an array of bioactive hydrophilic and lipophilic secondary metabolites that range in mode of action and toxicity. In this study, the metabolite fingerprint was mapped for thirteen Gambierdiscus, five Coolia and two Fukuyoa species (34 isolates) by assessing the production of 56 characterised secondary metabolites. Gambierdiscus polynesiensis was the only species to produce Pacific-ciguatoxin-3B (P-CTX3B), P-CTX3C, iso-P-CTX3B/C, P-CTX4A, P-CTX4B and iso-P-CTX4A/B. G. australes produced maitotoxin-1 (MTX-1) and MTX-5, G. cheloniae produced MTX-6 and G. honu produced MTX-7. Ubiquitous production of 44-methylgambierone was observed amongst all the Gambierdiscus isolates, with nine species also producing gambierone. Additional gambierone analogues, including anhydrogambierone (tentatively described herein), were also detected in all Gambierdiscus species, two Coolia and two Fukuyoa species. Gambieroxide was detected in G. lewisii and G. pacificus and gambieric acid A was detected in ten Gambierdiscus species, with G. australes (CAWD381) being the only isolate to produce gambieric acids A-D. This study has demonstrated that the isolates tested to date produce the known CTXs or MTXs, but not both, and highlighted several species that produced 'unknown' compounds displaying characteristics of cyclic polyethers, which will be the focus of future compound discovery efforts.


Asunto(s)
Ciguatoxinas , Dinoflagelados , Éteres , Serogrupo
6.
Harmful Algae ; 131: 102561, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38212086

RESUMEN

Ciguatera poisoning (CP) is the most common form of phycotoxin-borne seafood poisoning globally, affecting thousands of people on an annual basis. It most commonly occurs in residential fish of coral reefs, which consume toxin-laden algae, detritus, and reef animals. The class of toxins that cause CP, ciguatoxins (CTXs), originate in benthic, epiphytic dinoflagellates of the genera, Gambierdiscus and Fukuyoa, which are consumed by herbivores and detritivores that facilitate food web transfer. A number of factors have hindered adequate environmental monitoring and seafood surveillance for ciguatera including the low concentrations in which the toxins are found in seafood causing illness (sub-ppb), a lack of knowledge on the toxicity equivalence of other CTXs and contribution of other benthic algal toxins to the disease, and the limited availability of quantified toxin standards and reference materials. While progress has been made on the identification of the dinoflagellate taxa and toxins responsible for CP, more effort is needed to better understand the dynamics of toxin transfer into reef food webs in order to implement a practical monitoring program for CP. Here, we present a conceptual model that utilizes empirical field data (temperature, Gambierdiscus cell densities, macrophyte cover) in concert with other published studies (grazing rates and preference) to produce modeling outputs that suggest approaches that may be beneficial to developing monitoring programs: 1) targeting specific macrophytes for Gambierdiscus and toxin measurements to monitor toxin levels at the base of the food web (i.e., toxin loading); and 2) adjusting these targets across sites and over seasons. Coupling this approach with other methodologies being incorporated into monitoring programs (artificial substrates; FISH probes; toxin screening) may provide an "early warning" system to develop strategic responses to potential CP flare ups in the future.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Humanos , Animales , Ciguatoxinas/toxicidad , Región del Caribe , Monitoreo del Ambiente/métodos
7.
Harmful Algae ; 131: 102562, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38212087

RESUMEN

Ciguatera Poisoning (CP) is a widespread and complex poisoning syndrome caused by the consumption of fish or invertebrates contaminated with a suite of potent neurotoxins collectively known as ciguatoxins (CTXs), which are produced by certain benthic dinoflagellates species in the genera Gambierdiscus and Fukuyoa. Due to the complex nature of this HAB problem, along with a poor understanding of toxin production and entry in the coral reef food web, the development of monitoring, management, and forecasting approaches for CP has lagged behind those available for other HAB syndromes. Over the past two decades, renewed research on the taxonomy, physiology, and toxicology of CP-causing dinoflagellates has advanced our understanding of the species diversity that exists within these genera, including identification of highly toxic species (so called "superbugs") that likely contribute disproportionately to ciguatoxins entering coral reef food webs. The recent development of approaches for molecular analysis of field samples now provide the means to investigate in situ community composition, enabling characterization of spatio-temporal species dynamics, linkages between toxic species abundance and toxin flux, and the risk of ciguatoxin prevalence in fish. In this study we used species-specific fluorescent in situ hybridization (FISH) probes to investigate Gambierdiscus species composition and dynamics in St. Thomas (USVI) and the Florida Keys (USA) over multiple years (2018-2020). Within each location, samples were collected seasonally from several sites comprising varying depths, habitats, and algal substrates to characterize community structure over small spatial scales and across different host macrophytes. This approach enabled the quantitative determination of communities over spatiotemporal gradients, as well as the selective enumeration of species known to exhibit high toxicity, such as Gambierdiscus silvae. The investigation found differing community structure between St. Thomas and Florida Keys sites, driven in part by differences in the distribution of toxin-producing species G. silvae and G. belizeanus, which were present throughout sampling sites in St. Thomas but scarce or absent in the Florida Keys. This finding is significant given the high toxicity of G. silvae, and may help explain differences in fish toxicity and CP incidence between St. Thomas and Florida. Intrasite comparisons along a depth gradient found higher concentrations of Gambierdiscus spp. at deeper locations. Among the macrophytes sampled, Dictyota may be a likely vector for toxin transfer based on their widespread distribution, apparent colonization by G. silvae, and palatability to at least some herbivore grazers. Given its ubiquity throughout both study regions and sites, this taxa may also serve as a refuge, accumulating high concentrations of Gambierdiscus and other benthic dinoflagellates, which in turn can serve as source populations for highly palatable and ephemeral habitats nearby, such as turf algae. These studies further demonstrate the successful application of FISH probes in examining biogeographic structuring of Gambierdiscus communities, targeting individual toxin-producing species, and characterizing species-level dynamics that are needed to describe and model ecological drivers of species abundance and toxicity.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Ciguatoxinas/toxicidad , Florida , Hibridación Fluorescente in Situ , Islas Virgenes de los Estados Unidos
8.
Artículo en Inglés | MEDLINE | ID: mdl-37968064

RESUMEN

An outbreak of food poisoning of unknown origin was notified to Central Queensland Public Health Unit on 9 December 2021. The bulk carrier sailing from Higashiharima, Japan to Gladstone, Australia reported an incident of sudden illness, with 19 out of 20 sailors on board reporting a combination of gastrointestinal and neurological symptoms. Central Queensland Public Health Unit started the outbreak investigation as per Queensland Health public health management guidelines. All 20 of the sailors consumed a self-caught barracuda and squid, prepared by the ship's cook, the day before. Unconsumed samples of the fish and squid were sent for testing. The affected sailors were triaged on arrival and were provided with medical care as required. The barracuda sample contained ciguatoxins (CTXs; P-CTX-1, P-CTX-2, P-CTX-3) with a total count of 3.40 ug/kg confirming the diagnosis. We propose the usage of the combination of gastrointestinal symptoms and paraesthesia in the light of a recent intoxication event for early detection of ciguatera poisoning (CP) in the eastern seaboard of Australia.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Animales , Humanos , Intoxicación por Ciguatera/diagnóstico , Intoxicación por Ciguatera/epidemiología , Australia/epidemiología , Brotes de Enfermedades/prevención & control , Diagnóstico Precoz
9.
Harmful Algae ; 129: 102525, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951623

RESUMEN

Ciguatera Poisoning (CP) is a seafood poisoning highly prevalent in French Polynesia. This illness results from the consumption of seafood contaminated with ciguatoxins (CTXs) produced by Gambierdiscus, a benthic dinoflagellate. Ciguatera significantly degrades the health and economic well-being of local communities largely dependent on reef fisheries for their subsistence. French Polynesia has been the site of rich and active CP research since the 1960's. The environmental, toxicological, and epidemiological data obtained in the frame of large-scale field surveys and a country-wide CP case reporting program conducted over the past three decades in the five island groups of French Polynesia are reviewed. Results show toxin production in Gambierdiscus in the natural environment may vary considerably at a temporal and spatial scale, and that several locales clearly represent Gambierdiscus spp. "biodiversity hotspots". Current data also suggest the "hot" species G. polynesiensis could be the primary source of CTXs in local ciguateric biotopes, pending formal confirmation. The prevalence of ciguatoxic fish and the CTX levels observed in several locales were remarkably high, with herbivores and omnivores often as toxic as carnivores. Results also confirm the strong local influence of Gambierdiscus spp. on the CTX toxin profiles characterized across multiple food web components including in CP-prone marine invertebrates. The statistics, obtained in the frame of a long-term epidemiological surveillance program established in 2007, point towards an apparent decline in the number of CP cases in French Polynesia as a whole; however, incidence rates remain dangerously high in some islands. Several of the challenges and opportunities, most notably those linked to the strong cultural ramifications of CP among local communities, that need to be considered to define effective risk management strategies are addressed.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Humanos , Intoxicación por Ciguatera/epidemiología , Cadena Alimentaria , Ciguatoxinas/toxicidad , Polinesia/epidemiología
10.
Harmful Algae ; 127: 102478, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37544678

RESUMEN

Public awareness about Benthic Harmful Algal Blooms (BHABs) and their negative impacts has increased substantially over the past few decades. Even so, reports of BHABs remain relatively scarce in South America (SA). This paper provides a comprehensive overview of the current state of knowledge on BHABs in the continent, by integrating data from published articles, books, and technical reports. We recorded ∼300 different occurrences of potentially toxic BHAB species over the Caribbean, Atlantic and Pacific coasts, mostly in marine (>95%) but also in estuarine areas located from 12°36' N to 54°53' S. Over 70% of the data was published/released within the past 10 years, and ∼85% were concentrated in Brazil, Venezuela, Ecuador and Colombia. Benthic species were mainly associated with macroalgae, seagrass and sediment. Incidental detection in the plankton was also relevant, mainly in places where studies targeting BHAB species are still rare, like Argentina, Uruguay, Chile and Peru. The study listed 31 infrageneric taxa of potentially toxic benthic dinoflagellates and eight of estuarine cyanobacteria occurring in SA, with the greatest species diversity recorded in the equatorial-tropical zone, mainly in northeastern Brazil (Atlantic), Venezuela and Colombia (Caribbean), and the Galapagos Islands, Ecuador (Pacific). Local strains of Amphidinium, Gambierdiscus, Coolia and Prorocentrum spp. produced toxic compounds of emerging concern. Prorocentrum lima species complex was the most common and widely distributed taxon, followed by Ostreopsis cf. ovata. In fact, these two dinoflagellates were associated with most BHAB events in SA. Whereas the former has caused the contamination of multiple marine organisms and cases of Diarrhetic Shellfish Poisoning in subtropical and temperate areas, the latter has been associated with faunal mortalities and is suspected of causing respiratory illness to beach users in tropical places. Ciguatera Poisoning has been reported in Colombia (∼240 cases; no deaths) and Venezuela (60 cases; two deaths), and may be also a risk in other places where Gambierdiscus spp. and Fukuyoa paulensis have been reported, such as the Galapagos Islands and the tropical Brazilian coast. Despite the recent advances, negative impacts from BHABs in SA are intensified by limited research/training funding, as well as the lack of official HAB monitoring and poor analytical capability for species identification and toxin detection in parts of the continent.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , Microalgas , Floraciones de Algas Nocivas , Brasil
11.
Chemosphere ; 330: 138659, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37044143

RESUMEN

Ciguatera poisoning (CP) is a severe seafood-borne disease, caused by the consumption of reef fish contaminated with Caribbean ciguatoxins (C-CTXs) in the Caribbean and tropical Atlantic. However, C-CTXs have not been identified from their presumed algal source, so the relationship to the CTXs in fish causing illness remains unknown. This has hindered the development of detection methods, diagnostics, monitoring programs, and limited fundamental knowledge on the environmental factors that regulate C-CTX production. In this study, in vitro and chemical techniques were applied to unambiguously identify a novel C-CTX analogue, C-CTX5, from Gambierdiscus silvae and Gambierdiscus caribaeus strains from the Caribbean. Metabolism in vitro by fish liver microsomes converted algal C-CTX5 into C-CTX1/2, the dominant CTX in ciguatoxic fish from the Caribbean. Furthermore, C-CTX5 from G. silvae was confirmed to have voltage-gated sodium-channel-specific activity. This finding is crucial for risk assessment, understanding the fate of C-CTXs in food webs, and is a prerequisite for development of effective analytical methods and monitoring programs. The identification of an algal precursor produced by two Gambierdiscus species is a major breakthrough for ciguatera research that will foster major advances in this important seafood safety issue.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Ciguatoxinas/toxicidad , Región del Caribe , Peces
12.
Chemosphere ; 319: 137940, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36702405

RESUMEN

Marine toxins have a significant impact on seafood resources and human health. Up to date, mainly based on bioassays results, two genera of toxic microalgae, Gambierdiscus and Fukuyoa have been hypothesized to produce a suite of biologically active compounds, including maitotoxins (MTXs) and ciguatoxins (CTXs) with the latter causing ciguatera poisoning (CP) in humans. The global ubiquity of these microalgae and their ability to produce (un-)known bioactive compounds, necessitates strategies for screening, identifying, and reducing the number of target algal species and compounds selected for structural elucidation. To accomplish this task, a dereplication process is necessary to screen and profile algal extracts, identify target compounds, and support the discovery of novel bioactive chemotypes. Herein, a dereplication strategy was applied to a crude extract of a G. balechii culture to investigate for bioactive compounds with relevance to CP using liquid chromatography-high resolution mass spectrometry, in vitro cell-based bioassay, and a combination thereof via a bioassay-guided micro-fractionation. Three biologically active fractions exhibiting CTX-like and MTX-like toxicity were identified. A naturally incurred fish extract (Sphyraena barracuda) was used for confirmation where standards were unavailable. Using this approach, a putative I/C-CTX congener in G. balechii was identified for the first time, 44-methylgambierone was confirmed at 8.6 pg cell-1, and MTX-like compounds were purported. This investigative approach can be applied towards other harmful algal species of interest. The identification of a microalgal species herein, G. balechii (VGO920) which was found capable of producing a putative I/C-CTX in culture is an impactful advancement for global CP research. The large-scale culturing of G. balechii could be used as a source of I/C-CTX reference material not yet commercially available, thus, fulfilling an analytical gap that currently hampers the routine determination of CTXs in various environmental and human health-relevant matrices.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Humanos , Ciguatoxinas/toxicidad , Ciguatoxinas/análisis , Toxinas Marinas/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos
13.
Mar Drugs ; 22(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38248639

RESUMEN

Ciguatoxins (CTXs), potent neurotoxins produced by dinoflagellates of the genera Gambierdiscus and Fukuyoa, accumulate in commonly consumed fish species, causing human ciguatera poisoning. Field collections of Pacific reef fish reveal that consumed CTXs undergo oxidative biotransformations, resulting in numerous, often toxified analogs. Following our study showing rapid CTX accumulation in flesh of an herbivorous fish, we used the same laboratory model to examine the tissue distribution and metabolization of Pacific CTXs following long-term dietary exposure. Naso brevirostris consumed cells of Gambierdiscus polynesiensis in a gel food matrix over 16 weeks at a constant dose rate of 0.36 ng CTX3C equiv g-1 fish d-1. CTX toxicity determination of fish tissues showed CTX activity in all tissues of exposed fish (eight tissues plus the carcass), with the highest concentrations in the spleen. Muscle tissue retained the largest proportion of CTXs, with 44% of the total tissue burden. Moreover, relative to our previous study, we found that larger fish with slower growth rates assimilated a higher proportion of ingested toxin in their flesh (13% vs. 2%). Analysis of muscle extracts revealed the presence of CTX3C and CTX3B as well as a biotransformed product showing the m/z transitions of 2,3-dihydroxyCTX3C. This is the first experimental evidence of oxidative transformation of an algal CTX in a model consumer and known vector of CTX into the fish food web. These findings that the flesh intended for human consumption carries the majority of the toxin load, and that growth rates can influence the relationship between exposure and accumulation, have significant implications in risk assessment and the development of regulatory measures aimed at ensuring seafood safety.


Asunto(s)
Ciguatoxinas , Dinoflagelados , Animales , Humanos , Ciguatoxinas/toxicidad , Distribución Tisular , Exposición Dietética , Peces
14.
Animals (Basel) ; 12(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36552420

RESUMEN

Ciguatera poisoning (CP) is a foodborne disease known for centuries; however, little research has been conducted on the effects of ciguatoxins (CTXs) on fish metabolism. The main objective of this study was to assess different hepatic compounds observed in goldfish (Carassius auratus) fed C-CTX1 using nuclear magnetic resonance (NMR)-based metabolomics. Thirteen goldfish were treated with C-CTX1-enriched flesh and sampled on days 1, 8, 15, 29, 36, and 43. On day 43, two individuals, referred to as 'Detox', were isolated until days 102 and 121 to evaluate the possible recovery after returning to a commercial feed. At each sampling, hepatic tissue was weighed to calculate the hepatosomatic index (HSI) and analyzed for the metabolomics study; animals fed toxic flesh showed a higher HSI, even greater in the 'Detox' individuals. Furthermore, altered concentrations of alanine, lactate, taurine, glucose, and glycogen were observed in animals with the toxic diet. These disturbances could be related to an increase in ammonium ion (NH4+) production. An increase in ammonia (NH3) concentration in water was observed in the aquarium where the fish ingested toxic meat compared to the non-toxic aquarium. All these changes may be rationalized by the relationship between CTXs and the glucose-alanine cycle.

15.
Ethn Dis ; 32(4): 285-292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388868

RESUMEN

Harmful algal blooms (HABs) are a significant global environmental management challenge, especially with respect to microalgae that produce dangerous natural toxins. Examples of HAB toxin diseases with major global health impact include: ciguatera poisoning, paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), diarrhetic shellfish poisoning (DSP), and neurotoxic (brevetoxin) shellfish poisoning (NSP). Such diseases affect communities globally and contribute to health inequalities within the United States and beyond. Sharing data and lessons learned about the factors determining bloom occurrence and associated exposure to contaminated seafood across locations can reduce public health risks. Knowledge sharing is particularly important as ongoing global environmental changes seem to alter the intensity, location, and timing of toxic HAB events, reducing the reliability of conventional guidance where toxin risks have been endemic and leading to emerging challenges in new settings. Political changes that disrupt membership in knowledge-sharing networks may impede efforts to share scientific expertise and best practices. In this commentary, we stress the importance of community and expert knowledge sharing for reducing HAB risks, both for vulnerable communities in the United States and globally. Considering the impacts of political changes, we note the indirect engagement sometimes required for continued participation in international coordination programs. As an example, we highlight how lessons learned from a Native-led toxin monitoring and testing program (the Southeast Alaska Tribal Ocean Research partnership) can inform programs in other settings. We also describe how international knowledge is mutually valuable for this program in Southeast Alaska.


Asunto(s)
Floraciones de Algas Nocivas , Intoxicación por Mariscos , Humanos , Reproducibilidad de los Resultados , Intoxicación por Mariscos/prevención & control , Salud Pública , Salud Global
16.
Harmful Algae ; 118: 102308, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36195424

RESUMEN

An increase in cases of ciguatera poisoning (CP) and expansion of the causative species in the South Pacific region highlight the need for baseline data on toxic microalgal species to help identify new areas of risk and manage known hot spots. Gambierdiscus honu is a toxin producing and potential CP causing dinoflagellate species, first described in 2017. Currently no high-resolution geographical distribution, intraspecific genetic variation or toxin production diversity data is available for G. honu. This research aimed to further characterize G. honu by investigating its distribution using species-specific real-time polymerase chain reaction assays at 25 sites in an area spanning ∼8000 km of the Coral Sea/Pacific Ocean, and assessing intraspecific genetic variation, toxicity and toxin production of isolated strains. Assessment of genetic variation of the partial rRNA operon of isolates demonstrated no significant intraspecific population structure, in addition to a lack of adherence to isolation by distance (IBD) model of evolution. The detected distribution of G. honu in the Pacific region was within the expected tropical to temperate latitudinal ranges of 10° to -30° and extended from Australia to French Polynesia. In the lipophilic fractions, the neuroblastoma cell-based assay (CBA-N2a) showed no ciguatoxin (CTX)-like activity for nine of the 10 isolates, and an atypical pattern for CAWD233 isolate which showed cytotoxic activity in OV- and OV+ conditions. In the same way, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis confirmed no Pacific-CTXs (CTX-3B, CTX-3C, CTX-4A, CTX-4B) were produced by the ten strains. The CBA-N2a assessment of the hydrophilic fractions showed moderate to high cytotoxicity in both OV- and OV+ condition for all the strains showing a cytotoxic profile similar to that of gambierone. Indeed, this study is the first to show the cytotoxic activity of gambierone on mouse neuroblastoma cells while no cytotoxicity was observed when 44-MG was analysed at the same concentrations using the CBA-N2a. Analysis of the hydrophilic via LC-MS/MS confirmed production of gambierone in all isolates, ranging from 2.1 to 38.1 pg/cell, with 44-methylgambierone (44-MG) also produced by eight of the isolates, ranging from 0.3 to 42.9 pg/cell. No maitotoxin-1 was detected in any of the isolates. Classification of the G. honu strains according to the quantities of gambierone produced aligned with the classification of their cytotoxicity using the CBA-N2a. Finally, no maitotoxin-1 (MTX) was detected in any of the isolates. This study shows G. honu is widely distributed within the Pacific region with no significant intraspecific population structure present. This aligns with the view of microalgal populations as global metapopulations, however more in-depth assessment with other genetic markers could detect further structure. Toxicity diversity across 10 isolates assessed did not display any geographical patterns.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , Neuroblastoma , Animales , Cromatografía Liquida/métodos , Intoxicación por Ciguatera/epidemiología , Dinoflagelados/química , Éteres , Marcadores Genéticos , Toxinas Marinas/toxicidad , Ratones , Ratones Endogámicos CBA , Oxocinas , Espectrometría de Masas en Tándem
17.
Mar Drugs ; 20(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35877746

RESUMEN

Identifying compounds responsible for the observed toxicity of the Gambierdiscus species is a critical step to ascertaining whether they contribute to ciguatera poisoning. Macroalgae samples were collected during research expeditions to Rarotonga (Cook Islands) and North Meyer Island (Kermadec Islands), from which two new Gambierdiscus species were characterized, G. cheloniae CAWD232 and G. honu CAWD242. Previous chemical and toxicological investigations of these species demonstrated that they did not produce the routinely monitored Pacific ciguatoxins nor maitotoxin-1 (MTX-1), yet were highly toxic to mice via intraperitoneal (i.p.) injection. Bioassay-guided fractionation of methanolic extracts, incorporating wet chemistry and chromatographic techniques, was used to isolate two new MTX analogs; MTX-6 from G. cheloniae CAWD232 and MTX-7 from G. honu CAWD242. Structural characterization of the new MTX analogs used a combination of analytical chemistry techniques, including LC-MS, LC-MS/MS, HR-MS, oxidative cleavage and reduction, and NMR spectroscopy. A substantial portion of the MTX-7 structure was elucidated, and (to a lesser extent) that of MTX-6. Key differences from MTX-1 included monosulfation, additional hydroxyl groups, an extra double bond, and in the case of MTX-7, an additional methyl group. To date, this is the most extensive structural characterization performed on an MTX analog since the complete structure of MTX-1 was published in 1993. MTX-7 was extremely toxic to mice via i.p. injection (LD50 of 0.235 µg/kg), although no toxicity was observed at the highest dose rate via oral administration (155.8 µg/kg). Future research is required to investigate the bioaccumulation and likely biotransformation of the MTX analogs in the marine food web.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Oxocinas , Animales , Cromatografía Liquida , Dinoflagelados/química , Toxinas Marinas , Ratones , Oxocinas/análisis , Espectrometría de Masas en Tándem
18.
Mar Drugs ; 20(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736151

RESUMEN

Gambierdiscus and Fukuyoa dinoflagellates produce a suite of secondary metabolites, including ciguatoxins (CTXs), which bioaccumulate and are further biotransformed in fish and marine invertebrates, causing ciguatera poisoning when consumed by humans. This study is the first to compare the performance of the fluorescent receptor binding assay (fRBA), neuroblastoma cell-based assay (CBA-N2a), and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the quantitative estimation of CTX contents in 30 samples, obtained from four French Polynesian strains of Gambierdiscus polynesiensis. fRBA was applied to Gambierdiscus matrix for the first time, and several parameters of the fRBA protocol were refined. Following liquid/liquid partitioning to separate CTXs from other algal compounds, the variability of CTX contents was estimated using these three methods in three independent experiments. All three assays were significantly correlated with each other, with the highest correlation coefficient (r2 = 0.841) found between fRBA and LC-MS/MS. The CBA-N2a was more sensitive than LC-MS/MS and fRBA, with all assays showing good repeatability. The combined use of fRBA and/or CBA-N2a for screening purposes and LC-MS/MS for confirmation purposes allows for efficient CTX evaluation in Gambierdiscus. These findings, which support future collaborative studies for the inter-laboratory validation of CTX detection methods, will help improve ciguatera risk assessment and management.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Cromatografía Liquida , Intoxicación por Ciguatera/etiología , Ciguatoxinas/análisis , Dinoflagelados/química , Polinesia , Espectrometría de Masas en Tándem
19.
Harmful Algae ; 115: 102230, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35623687

RESUMEN

The genus Gambierdiscus is a marine benthic/epiphytic dinoflagellate that has been investigated worldwide as the causative agent of ciguatera poisoning (CP). In Japan, CP occurs mainly in the subtropical region and sporadically in the temperate region. To understand the mechanism of CP outbreaks in the coastal regions, identifying the species of Gambierdiscus occurring in the regions and determining their toxicity and growth characteristics, such as growth responses to temperature, salinity, and light intensity, are important. Recently, the occurrence of G. silvae in the Japanese temperate and subtropical regions has been revealed through metabarcoding. However, the toxicity and growth characteristics of G. silvae have not yet been investigated. In this study, three strains of Gambierdiscus were isolated from a depth of 30 m in subtropical waters in Japan and were identified as Gambierdiscus silvae based on morphological characteristics and phylogenetic positions. A dichloromethane soluble fraction (DSF) and aqueous methanol soluble fraction (MSF) of the three strains showed high mouse toxicity by intraperitoneal injection, but only the DSF of the three strains showed toxicity by gavage. All strains grew in the range of 17.5-30 °C and salinity range of 25-40, and grew well at 25 °C and salinity 30. The optimal light intensity for growth of the strains was 42.0-83.0 µmol photons/m2/s. These results suggest that G. silvae has the potential to be widely distributed from temperate to subtropical/ regions and in shallow to deep coastal waters of Japan. Understanding the growth characteristics of this species would be useful in predicting the occurrence of this species in Japanese coastal waters. Finally, the results obtained in this study suggest that G. silvae showing high toxicity is one of the causative agents of CP in Japan, and knowledge of this species would be useful in understanding the mechanism of CP outbreaks in Japan.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , Animales , Dinoflagelados/fisiología , Japón , Ratones , Filogenia
20.
Harmful Algae ; 111: 102163, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35016767

RESUMEN

The genus Gambierdiscus is a marine benthic/epiphytic dinoflagellate considered the causative agent of ciguatera poisoning (CP). Clarifying the geographical distribution of this genus to understand the potential risk of CP is important. Many studies have focused only on the species/phylotype composition of Gambierdiscus in shallow waters, but no study has investigated the species/phylotype composition of the genus in deep waters. In the present study, the distributions of Gambierdiscus species/phylotypes at two depths (2-8 and 30 m) and two sampling sites (temperate and subtropical) in Japan was investigated using high throughput sequencing (HTS) with a newly developed primer set that preferentially amplifies the 18S rDNA V8-V9 region of Alveolata. A phylogenetic analysis using 89 samples collected over three years revealed of ten Gambierdiscus species/phylotypes including not only two species that have not been reported in Japan (G. caribaeus and G. silvae) but also four novel phylotypes (Gambierdiscus spp. Clade II_1, Clade II_2, Clade II_3, and Clade VI_1). Uncorrected genetic distances also supported that these new phylotypes clearly diverged from other Gambierdiscus species. All four new phylotypes, G. caribaeus, and G. silvae were distributed in the subtropical region. Among them, Clade II_2, Clade VI_1, and G. silvae were also distributed in the temperate region. Four species/phylotypes previously reported from Japan showed a similar distribution as reported previously. Among the ten species/phylotypes, Gambierdiscus sp. type 3 and Clade VI_1 were found only in deep waters, whereas five species/phylotypes were observed only in shallow waters. The other three species/phylotypes were found in both deep and shallow waters. The results of the horizontal and vertical distribution suggest that the growth characteristics of each species/phylotypes found in Japan might adapt to the ambient environmental conditions. This study revealed an inclusive assemblage of Gambierdiscus species/phylotypes in Japan through metabarcoding using the Alveolata primer set. In the future, the abundance and toxicities/toxin productions of the newly reported species/phylotypes need to be clarified to understand the mechanism of CP outbreaks in Japan.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , ADN Ribosómico/genética , Japón , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA