Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38885060

RESUMEN

Multiple studies in a range of taxa have found links between structural variants and the development of ecologically important traits. Such variants are becoming easier to find due, in large part, to the increase in the amount of genome-wide sequence data in nonmodel organisms. The salmonids (salmon, trout, and charr) are a taxonomic group with abundant genome-wide datasets due to their importance in aquaculture, fisheries, and variation in multiple ecologically important life-history traits. Previous research on rainbow trout (Oncorhynchus mykiss) has documented a large pericentric (∼55 Mb) chromosomal inversion (CI) on chromosome 5 (Omy05) and a second smaller (∼14 Mb) chromosome inversion on Omy20. While the Omy05 inversion appears to be associated with multiple adaptive traits, the inversion on Omy20 has received far less attention. In this study, we re-analyze RAD-seq and amplicon data from several populations of rainbow trout (O. mykiss) to better document the structure and geographic distribution of variation in the Omy20 CI. Moreover, we utilize phylogenomic techniques to characterize both the age- and the protein-coding gene content of the Omy20 CI. We find that the age of the Omy20 inversion dates to the early stages of O. mykiss speciation and predates the Omy05 inversion by ∼450,000 years. The 2 CIs differ further in terms of the frequency of the homokaryotypes. While both forms of the Omy05 CI are found across the eastern Pacific, the ancestral version of the Omy20 CI is restricted to the southern portion of the species range in California. Furthermore, the Omy20 inverted haplotype is comparable in genetic diversity to the ancestral form, whereas derived CIs typically show substantially reduced genetic diversity. These data contribute to our understanding of the age and distribution of a large CI in rainbow trout and provide a framework for researchers looking to document CIs in other nonmodel species.


Asunto(s)
Inversión Cromosómica , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/genética , Genética de Población , Genoma , Filogenia , Variación Genética
2.
Mol Ecol ; 33(4): e17280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38247305

RESUMEN

Understanding how natural selection drives diversification in nature has been at the forefront of biological research for over a century. The main idea is simple: natural selection favours individuals best suited to pass on their genes. However, the journey from birth to reproduction is complex as organisms experience multiple developmental stages, each influenced by genetic and environmental factors (Orr, 2009). These complexities compound even further as each stage of development might be governed by a unique underlying set of alleles and genes. In this issue of Molecular Ecology, Goebl et al. (2022) examine the role of natural selection in driving ecotypic divergence across different life history stages of the prairie sunflower Helianthus petiolaris. The authors used reciprocal transplant experiments, demographic models, and genomic sequencing to explore fitness variation across developmental stages. They show how natural selection impacts population divergence across multiple life history stages and evaluate the resulting allele frequency changes. Goebl et al. link these results to the role of chromosomal inversions, thus furthering our understanding of how ecological divergence proceeds in the face of gene flow. Below, we explore these results in detail and complement their interpretation by considering the evolution of genetic correlations amongst traits governing fitness.


Asunto(s)
Helianthus , Selección Genética , Humanos , Frecuencia de los Genes , Mapeo Cromosómico , Ecotipo , Genómica , Helianthus/genética
3.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37378555

RESUMEN

It has long been known that the chiasmata are not independently distributed in most organisms, a phenomenon known as chiasma interference. In this paper, I suggest a model of chiasma interference that generalizes the Poisson model, the counting model, the Poisson-skip model, and the two-pathway counting model into a single framework, and use it to derive infinite series expressions for the sterility and recombination pattern probabilities in inversion homo- and heterokaryotypes, and a closed-form expression for the special case of the two-pathway counting model in homokaryotypes. I then use these expressions to perform maximum likelihood parameter estimations for recombination and tetrad data from various species. The results imply that the simpler counting models perform well compared to more complex ones, that interference works in a similar way in homo- and heterokaryotypes, and that the model fits well with data for the latter as well as the former. I also find evidence that the interference signal is broken by the centromere in some species, but not others, suggestions of negative interference in Aspergillus nidulans, and no consistent support for the theory that a second noninterfering chiasma pathway exists only in organisms that require double-strand break for synapsis. I suggest that the latter finding is at least partly due to issues involved in analyzing aggregate data from different experiments and individuals.


Asunto(s)
Intercambio Genético , Infertilidad , Humanos , Centrómero , Emparejamiento Cromosómico , Inversión Cromosómica , Meiosis
4.
Proc Natl Acad Sci U S A ; 120(11): e2219835120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36881629

RESUMEN

Species distributed across heterogeneous environments often evolve locally adapted ecotypes, but understanding of the genetic mechanisms involved in their formation and maintenance in the face of gene flow is incomplete. In Burkina Faso, the major African malaria mosquito Anopheles funestus comprises two strictly sympatric and morphologically indistinguishable yet karyotypically differentiated forms reported to differ in ecology and behavior. However, knowledge of the genetic basis and environmental determinants of An. funestus diversification was impeded by lack of modern genomic resources. Here, we applied deep whole-genome sequencing and analysis to test the hypothesis that these two forms are ecotypes differentially adapted to breeding in natural swamps versus irrigated rice fields. We demonstrate genome-wide differentiation despite extensive microsympatry, synchronicity, and ongoing hybridization. Demographic inference supports a split only ~1,300 y ago, closely following the massive expansion of domesticated African rice cultivation ~1,850 y ago. Regions of highest divergence, concentrated in chromosomal inversions, were under selection during lineage splitting, consistent with local adaptation. The origin of nearly all variations implicated in adaptation, including chromosomal inversions, substantially predates the ecotype split, suggesting that rapid adaptation was fueled mainly by standing genetic variation. Sharp inversion frequency differences likely facilitated adaptive divergence between ecotypes by suppressing recombination between opposing chromosomal orientations of the two ecotypes, while permitting free recombination within the structurally monomorphic rice ecotype. Our results align with growing evidence from diverse taxa that rapid ecological diversification can arise from evolutionarily old structural genetic variants that modify genetic recombination.


Asunto(s)
Anopheles , Malaria , Oryza , Animales , Inversión Cromosómica , Ecotipo , Fitomejoramiento , Anopheles/genética , Oryza/genética
5.
Evolution ; 77(4): 1077-1090, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36794986

RESUMEN

The idea that sex differences in selection drive the evolution of suppressed recombination between sex chromosomes is well developed in population genetics. Yet, despite a now classic body of theory, empirical evidence that sexually antagonistic selection drives the evolution of recombination arrest remains equivocal and alternative hypotheses underdeveloped. Here, we investigate whether the length of "evolutionary strata" formed by chromosomal inversions (or other large-effect recombination modifiers) expanding the non-recombining sex-linked region (SLR) on sex chromosomes can be informative of how selection influenced their fixation. We develop population genetic models to show how the length of an SLR-expanding inversion, and the presence of partially recessive deleterious mutational variation, affect the fixation probability of three different classes of inversions: (1) intrinsically neutral, (2) directly beneficial (i.e., due to breakpoint or positional effects), and (3) those capturing sexually antagonistic (SA) loci. Our models indicate that neutral inversions, and those capturing an SA locus in linkage disequilibrium with the ancestral SLR, will exhibit a strong fixation bias toward small inversions; while unconditionally beneficial inversions, and those capturing a genetically unlinked SA locus, will favor fixation of larger inversions. The footprint of evolutionary stratum size left behind by different selection regimes is strongly influenced by parameters affecting the deleterious mutation load, the physical position of the ancestral SLR, and the distribution of new inversion lengths.


Asunto(s)
Evolución Molecular , Selección Genética , Femenino , Masculino , Humanos , Cromosomas Sexuales , Genética de Población , Recombinación Genética , Inversión Cromosómica
6.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806940

RESUMEN

White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters. To study the genetic mechanisms underlying secondarily temperate adaptation in icefishes, we generated chromosome-level genome assemblies of both C. esox and its Antarctic sister species, Champsocephalus gunnari. The C. esox genome is similar in structure and organization to that of its Antarctic congener; however, we observe evidence of chromosomal rearrangements coinciding with regions of elevated genetic divergence in pike icefish populations. We also find several key biological pathways under selection, including genes related to mitochondria and vision, highlighting candidates behind temperate adaptation in C. esox. Substantial antifreeze glycoprotein (AFGP) pseudogenization has occurred in the pike icefish, likely due to relaxed selection following ancestral escape from Antarctica. The canonical AFGP locus organization is conserved in C. esox and C. gunnari, but both show a translocation of two AFGP copies to a separate locus, previously unobserved in cryonotothenioids. Altogether, the study of this secondarily temperate species provides an insight into the mechanisms underlying adaptation to ecologically disparate environments in this otherwise highly specialized group.


Asunto(s)
Adaptación Fisiológica , Perciformes , Animales , Regiones Antárticas , Peces/genética , Perciformes/genética , Genómica , Proteínas Anticongelantes
7.
Mol Ecol ; 32(7): 1549-1566, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34878685

RESUMEN

Understanding how gene flow influences adaptive divergence is important for predicting adaptive responses. Theoretical studies suggest that when gene flow is high, clustering of adaptive genes in fewer genomic regions would protect adaptive alleles from recombination and thus be selected for, but few studies have tested it with empirical data. Here, we used restriction site-associated sequencing to generate genomic data for six fish species with contrasting life histories from six reaches of the Upper Mississippi River System, USA. We used four differentiation-based outlier tests and three genotype-environment association analyses to define neutral single nucleotide polymorphisms (SNPs) and outlier SNPs that were putatively under selection. We then examined the distribution of outlier SNPs along the genome and investigated whether these SNPs were found in genomic islands of differentiation and inversions. We found that gene flow varied among species, and outlier SNPs were clustered more tightly in species with higher gene flow. The two species with the highest overall FST (0.0303-0.0720) and therefore lowest gene flow showed little evidence of clusters of outlier SNPs, with outlier SNPs in these species spreading uniformly across the genome. In contrast, nearly all outlier SNPs in the species with the lowest FST (0.0003) were found in a single large putative inversion. Two other species with intermediate gene flow (FST  ~ 0.0025-0.0050) also showed clustered genomic architectures, with most islands of differentiation clustered on a few chromosomes. Our results provide important empirical evidence to support the hypothesis that increasingly clustered architecture of local adaptation is associated with high gene flow.


Asunto(s)
Flujo Génico , Genética de Población , Animales , Genómica , Adaptación Fisiológica/genética , Genoma , Peces/genética , Polimorfismo de Nucleótido Simple/genética
8.
Mol Ecol ; 32(4): 854-866, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461113

RESUMEN

Interspecific gene flow (introgression) is an important source of new genetic variation, but selection against it can reinforce reproductive barriers between interbreeding species. We used an experimental approach to trace the role of chromosomal inversions and incompatibility genes in preventing introgression between two partly sympatric Drosophila virilis group species, D. flavomontana and D. montana. We backcrossed F1 hybrid females from a cross between D. flavomontana female and D. montana male with the males of the parental species for two generations and sequenced pools of parental strains and their reciprocal second generation backcross (BC2 mon and BC2 fla) females. Contrasting the observed amount of introgression (mean hybrid index, HI) in BC2 female pools along the genome to simulations under different scenarios allowed us to identify chromosomal regions of restricted and increased introgression. We found no deviation from the HI expected under a neutral null model for any chromosome for the BC2 mon pool, suggesting no evidence for genetic incompatibilities in backcrosses towards D. montana. In contrast, the BC2 fla pool showed high variation in the observed HI between different chromosomes, and massive reduction of introgression on the X chromosome (large X-effect). This observation is compatible with reduced recombination combined with at least one dominant incompatibility locus residing within the X inversion(s). Overall, our study suggests that genetic incompatibilities arising within chromosomal inversions can play an important role in speciation.


Asunto(s)
Inversión Cromosómica , Drosophila , Animales , Femenino , Masculino , Inversión Cromosómica/genética , Drosophila/genética , Cromosoma X/genética , Reproducción
9.
Genes Brain Behav ; 21(8): e12831, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220804

RESUMEN

White-throated sparrows (Zonotrichia albicollis) offer a unique opportunity to connect genotype with behavioral phenotype. In this species, a rearrangement of the second chromosome is linked with territorial aggression; birds with a copy of this "supergene" rearrangement are more aggressive than those without it. The supergene has captured the gene VIP, which encodes vasoactive intestinal peptide, a neuromodulator that drives aggression in other songbirds. In white-throated sparrows, VIP expression is higher in the anterior hypothalamus of birds with the supergene than those without it, and expression of VIP in this region predicts the level of territorial aggression regardless of genotype. Here, we aimed to identify epigenetic mechanisms that could contribute to differential expression of VIP both in breeding adults, which exhibit morph differences in territorial aggression, and in nestlings, before territorial behavior develops. We extracted and bisulfite-converted DNA from samples of the hypothalamus in wild-caught adults and nestlings and used high-throughput sequencing to measure DNA methylation of a region upstream of the VIP start site. We found that the allele inside the supergene was less methylated than the alternative allele in both adults and nestlings. The differential methylation was attributed primarily to CpG sites that were shared between the alleles, not to polymorphic sites, which suggests that epigenetic regulation is occurring independently of the genetic differentiation within the supergene. This work represents an initial step toward understanding how epigenetic differentiation inside chromosomal inversions leads to the development of alternative behavioral phenotypes.


Asunto(s)
Gorriones , Animales , Gorriones/genética , Péptido Intestinal Vasoactivo/genética , Conducta Social , Alelos , Conducta Animal/fisiología , Metilación , Epigénesis Genética
10.
Elife ; 112022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486424

RESUMEN

Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive-the driver and the target-linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversions on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Inversión Cromosómica , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Carga Genética , Masculino , Meiosis , Recombinación Genética , Selección Genética
11.
PeerJ ; 10: e12831, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35116204

RESUMEN

BACKGROUND: Large (>1 Mb), polymorphic inversions have substantial impacts on population structure and maintenance of genotypes. These large inversions can be detected from single nucleotide polymorphism (SNP) data using unsupervised learning techniques like PCA. Construction and analysis of a feature matrix from millions of SNPs requires large amount of memory and limits the sizes of data sets that can be analyzed. METHODS: We propose using feature hashing construct a feature matrix from a VCF file of SNPs for reducing memory usage. The matrix is constructed in a streaming fashion such that the entire VCF file is never loaded into memory at one time. RESULTS: When evaluated on Anopheles mosquito and Drosophila fly data sets, our approach reduced memory usage by 97% with minimal reductions in accuracy for inversion detection and localization tasks. CONCLUSION: With these changes, inversions in larger data sets can be analyzed easily and efficiently on common laptop and desktop computers. Our method is publicly available through our open-source inversion analysis software, Asaph.


Asunto(s)
Anopheles , Polimorfismo de Nucleótido Simple , Animales , Polimorfismo de Nucleótido Simple/genética , Inversión Cromosómica/genética , Programas Informáticos , Genotipo , Anopheles/genética
12.
Fly (Austin) ; 16(1): 85-104, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35060806

RESUMEN

Living in high latitudes and altitudes sets specific requirements on species' ability to forecast seasonal changes and to respond to them in an appropriate way. Adaptation into diverse environmental conditions can also lead to ecological speciation through habitat isolation or by inducing changes in traits that influence assortative mating. In this review, we explain how the unique time-measuring systems of Drosophila virilis group species have enabled the species to occupy high latitudes and how the traits involved in species reproduction and survival exhibit strong linkage with latitudinally varying photoperiodic and climatic conditions. We also describe variation in reproductive barriers between the populations of two species with overlapping distributions and show how local adaptation and the reinforcement of prezygotic barriers have created partial reproductive isolation between conspecific populations. Finally, we consider the role of species-specific chromosomal inversions and the X chromosome in the development of reproductive barriers between diverging lineages.


Asunto(s)
Drosophila , Aislamiento Reproductivo , Adaptación Fisiológica , Animales , Drosophila/genética , Especiación Genética , Fotoperiodo , Reproducción
13.
Wellcome Open Res ; 7: 287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36874567

RESUMEN

We present a genome assembly from an individual female Anopheles funestus (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae). The genome sequence is 251 megabases in span. The majority of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.

14.
Genetica ; 149(3): 155-169, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34129131

RESUMEN

The adaptive value of chromosomal inversions continues raising relevant questions in evolutionary biology. In many species of the Drosophila genus, different inversions have been recognized to be related to thermal adaptation, but it is necessary to determine to which specific climatic variables the inversions are adaptive. With this aim, the behavior of thermal adapted inversions of Drosophila subobscura regarding climatic variables was studied in the natural population of Avala (Serbia) during the 2014-2017 period. The results obtained were compared with those previously reported in the Font Groga (Barcelona, Spain) population, which presents different climatic and environmental conditions. In both populations, it was observed that most thermal adapted inversions were significantly associated with the first, second or both principal components, which were related with maximum, minimum and mean temperatures. Moreover, a significant increase over years (2004-2017) for the minimum temperature was detected. In parallel, a significant variation over time in Avala was only observed for the frequencies of 'warm' and 'non-thermal' adapted inversions of the U chromosome. However, stability in the chromosomal inversion polymorphism was observed for the 2014-2017 period which might result from the temporal span of the study and/or selective process acting on the population.


Asunto(s)
Aclimatación , Inversión Cromosómica , Drosophila/genética , Animales , Cromosomas de Insectos/genética , Drosophila/fisiología , Ecotipo , Polimorfismo Genético
15.
BMC Genomics ; 22(1): 422, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103015

RESUMEN

BACKGROUND: Whole genome re-sequencing provides powerful data for population genomic studies, allowing robust inferences of population structure, gene flow and evolutionary history. For the major malaria vector in Africa, Anopheles gambiae, other genetic aspects such as selection and adaptation are also important. In the present study, we explore population genetic variation from genome-wide sequencing of 765 An. gambiae and An. coluzzii specimens collected from across Africa. We used t-SNE, a recently popularized dimensionality reduction method, to create a 2D-map of An. gambiae and An. coluzzii genes that reflect their population structure similarities. RESULTS: The map allows intuitive navigation among genes distributed throughout the so-called "mainland" and numerous surrounding "island-like" gene clusters. These gene clusters of various sizes correspond predominantly to low recombination genomic regions such as inversions and centromeres, and also to recent selective sweeps. Because this mosquito species complex has been studied extensively, we were able to support our interpretations with previously published findings. Several novel observations and hypotheses are also made, including selective sweeps and a multi-locus selection event in Guinea-Bissau, a known intense hybridization zone between An. gambiae and An. coluzzii. CONCLUSIONS: Our results present a rich dataset that could be utilized in functional investigations aiming to shed light onto An. gambiae s.l genome evolution and eventual speciation. In addition, the methodology presented here can be used to further characterize other species not so well studied as An. gambiae, shortening the time required to progress from field sampling to the identification of genes and genomic regions under unique evolutionary processes.


Asunto(s)
Anopheles , Malaria , África , Animales , Anopheles/genética , Guinea Bissau , Islas , Malaria/genética , Mosquitos Vectores/genética
16.
Cell Rep ; 33(10): 108457, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33242406

RESUMEN

Telomere length dynamics and DNA damage responses were assessed before, during, and after one-year or shorter duration missions aboard the International Space Station (ISS) in a comparatively large cohort of astronauts (n = 11). Although generally healthy individuals, astronauts tended to have significantly shorter telomeres and lower telomerase activity than age- and sex-matched ground controls before and after spaceflight. Although telomeres were longer during spaceflight irrespective of mission duration, telomere length shortened rapidly upon return to Earth, and overall astronauts had shorter telomeres after spaceflight than they did before; inter-individual differences were identified. During spaceflight, all crewmembers experienced oxidative stress, which positively correlated with telomere length dynamics. Significantly increased frequencies of chromosomal inversions were observed during and after spaceflight; changes in cell populations were also detected. We propose a telomeric adaptive response to chronic oxidative damage in extreme environments, whereby the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway is transiently activated in normal somatic cells.


Asunto(s)
Reparación del ADN/fisiología , Homeostasis del Telómero/fisiología , Ingravidez/efectos adversos , Adulto , Astronautas , ADN/química , ADN/efectos de la radiación , Daño del ADN/fisiología , Reparación del ADN/efectos de la radiación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Vuelo Espacial , Telomerasa/metabolismo , Telómero/metabolismo , Telómero/fisiología , Homeostasis del Telómero/efectos de la radiación , Factores de Tiempo
17.
Hum Mutat ; 41(11): 1979-1998, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32906200

RESUMEN

Cytogenetically detected inversions are generally assumed to be copy number and phenotypically neutral events. While nonallelic homologous recombination is thought to play a major role, recent data suggest the involvement of other molecular mechanisms in inversion formation. Using a combination of short-read whole-genome sequencing (WGS), 10X Genomics Chromium WGS, droplet digital polymerase chain reaction and array comparative genomic hybridization we investigated the genomic structure of 18 large unique cytogenetically detected chromosomal inversions and achieved nucleotide resolution of at least one chromosomal inversion junction for 13/18 (72%). Surprisingly, we observed that seemingly copy number neutral inversions can be accompanied by a copy-number gain of up to 350 kb and local genomic complexities (3/18, 17%). In the resolved inversions, the mutational signatures are consistent with nonhomologous end-joining (8/13, 62%) or microhomology-mediated break-induced replication (5/13, 38%). Our study indicates that short-read 30x coverage WGS can detect a substantial fraction of chromosomal inversions. Moreover, replication-based mechanisms are responsible for approximately 38% of those events leading to a significant proportion of inversions that are actually accompanied by additional copy-number variation potentially contributing to the overall phenotypic presentation of those patients.


Asunto(s)
Inversión Cromosómica , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Hibridación Genómica Comparativa , Femenino , Frecuencia de los Genes , Haplotipos , Heterocigoto , Recombinación Homóloga , Humanos , Cariotipificación , Masculino , Linaje , Secuenciación Completa del Genoma
18.
G3 (Bethesda) ; 10(11): 4271-4285, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32972999

RESUMEN

Balancers are rearranged chromosomes used in Drosophila melanogaster to maintain deleterious mutations in stable populations, preserve sets of linked genetic elements and construct complex experimental stocks. Here, we assess the phenotypes associated with breakpoint-induced mutations on commonly used third chromosome balancers and show remarkably few deleterious effects. We demonstrate that a breakpoint in p53 causes loss of radiation-induced apoptosis and a breakpoint in Fucosyltransferase A causes loss of fucosylation in nervous and intestinal tissue-the latter study providing new markers for intestinal cell identity and challenging previous conclusions about the regulation of fucosylation. We also describe thousands of potentially harmful mutations shared among X or third chromosome balancers, or unique to specific balancers, including an Ankyrin2 mutation present on most TM3 balancers, and reiterate the risks of using balancers as experimental controls. We used long-read sequencing to confirm or refine the positions of two inversions with breakpoints lying in repetitive sequences and provide evidence that one of the inversions, In(2L)Cy, arose by ectopic recombination between foldback transposon insertions and the other, In(3R)C, cleanly separates subtelomeric and telomeric sequences and moves the subtelomeric sequences to an internal chromosome position. In addition, our characterization of In(3R)C shows that balancers may be polymorphic for terminal deletions. Finally, we present evidence that extremely distal mutations on balancers can add to the stability of stocks whose purpose is to maintain homologous chromosomes carrying mutations in distal genes. Overall, these studies add to our understanding of the structure, diversity and effectiveness of balancer chromosomes.


Asunto(s)
Cromosomas , Drosophila melanogaster , Animales , Inversión Cromosómica , Drosophila melanogaster/genética , Mutación , Fenotipo
19.
Genetics ; 216(1): 205-226, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32732371

RESUMEN

Sex-Ratio (SR) chromosomes are selfish X-chromosomes that distort Mendelian segregation and are commonly associated with inversions. These chromosomal rearrangements suppress recombination with Standard (ST) X-chromosomes and are hypothesized to maintain multiple alleles important for distortion in a single large haplotype. Here, we conduct a multifaceted study of the multiply inverted Drosophila pseudoobscura SR chromosome to understand the evolutionary history, genetic architecture, and present-day dynamics that shape this enigmatic selfish chromosome. The D. pseudoobscura SR chromosome has three nonoverlapping inversions of the right arm of the metacentric X-chromosome: basal, medial, and terminal. We find that 23 of 29 Mb of the D. pseudoobscuraX-chromosome right arm is highly differentiated between the Standard and SR arrangements, including a 6.6 Mb collinear region between the medial and terminal inversions. Although crossing-over is heavily suppressed on this chromosome arm, we discover it is not completely eliminated, with measured rates indicating recombination suppression alone cannot explain patterns of differentiation or the near-perfect association of the three SR chromosome inversions in nature. We then demonstrate the ancient basal and medial inversions of the SR chromosome contain genes sufficient to cause weak distortion. In contrast, the younger terminal inversion cannot distort by itself, but contains at least one modifier gene necessary for full manifestation of strong sex chromosome distortion. By parameterizing population genetic models for chromosome-wide linkage disequilibrium with our experimental results, we infer that strong selection acts to maintain the near-perfect association of SR chromosome inversions in present-day populations. Based on comparative genomic analyses, direct recombination experiments, segregation distortion assays, and population genetic modeling, we conclude the combined action of suppressed recombination and strong, ongoing, epistatic selection shape the D. pseudoobscura SR arrangement into a highly differentiated chromosome.


Asunto(s)
Inversión Cromosómica , Epistasis Genética , Selección Genética , Cromosoma X/genética , Animales , Drosophila , Evolución Molecular , Genes Modificadores , Desequilibrio de Ligamiento , Recombinación Genética , Supresión Genética
20.
BMC Biol ; 18(1): 26, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32164699

RESUMEN

BACKGROUND: Aedes aegypti is the principal mosquito vector of Zika, dengue, and yellow fever viruses. Two subspecies of Ae. aegypti exhibit phenotypic divergence with regard to habitat, host preference, and vectorial capacity. Chromosomal inversions have been shown to play a major role in adaptation and speciation in dipteran insects and would be of great utility for studies of Ae. aegypti. However, the large and highly repetitive genome of Ae. aegypti makes it difficult to detect inversions with paired-end short-read sequencing data, and polytene chromosome analysis does not provide sufficient resolution to detect chromosome banding patterns indicative of inversions. RESULTS: To characterize chromosomal diversity in this species, we have carried out deep Illumina sequencing of linked-read (10X Genomics) libraries in order to discover inversion loci as well as SNPs. We analyzed individuals from colonies representing the geographic limits of each subspecies, one contact zone between subspecies, and a closely related sister species. Despite genome-wide SNP divergence and abundant microinversions, we do not find any inversions occurring as fixed differences between subspecies. Many microinversions are found in regions that have introgressed and have captured genes that could impact behavior, such as a cluster of odorant-binding proteins that may play a role in host feeding preference. CONCLUSIONS: Our study shows that inversions are abundant and widely shared among subspecies of Aedes aegypti and that introgression has occurred in regions of secondary contact. This library of 32 novel chromosomal inversions demonstrates the capacity for linked-read sequencing to identify previously intractable genomic rearrangements and provides a foundation for future population genetics studies in this species.


Asunto(s)
Aedes/genética , Inversión Cromosómica , Introgresión Genética , Mosquitos Vectores/genética , Animales , Cromosomas , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA