Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
1.
bioRxiv ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39253426

RESUMEN

Epigenetic mechanisms govern the transcriptional activity of lineage-specifying enhancers; but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly-resolved timeline of DNA demethylation, chromatin accessibility, and transcription factor occupancy during neural progenitor cell differentiation. We show thousands of enhancers undergo rapid, transient accessibility changes associated with distinct periods of transcription factor expression. However, most DNA methylation changes are unidirectional and delayed relative to chromatin dynamics, creating transiently discordant epigenetic states. Genome-wide detection of 5-hydroxymethylcytosine further revealed active demethylation begins ahead of chromatin and transcription factor activity, while enhancer hypomethylation persists long after these activities have dissipated. We demonstrate that these timepoint specific methylation states predict past, present and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to mediate short and long-term enhancer regulation during cell fate specification.

2.
Genome Biol ; 25(1): 235, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223609

RESUMEN

Enhlink is a computational tool for scATAC-seq data analysis, facilitating precise interrogation of enhancer function at the single-cell level. It employs an ensemble approach incorporating technical and biological covariates to infer condition-specific regulatory DNA linkages. Enhlink can integrate multi-omic data for enhanced specificity, when available. Evaluation with simulated and real data, including multi-omic datasets from the mouse striatum and novel promoter capture Hi-C data, demonstrate that Enhlink outperfoms alternative methods. Coupled with eQTL analysis, it identified a putative super-enhancer in striatal neurons. Overall, Enhlink offers accuracy, power, and potential for revealing novel biological insights in gene regulation.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Animales , Ratones , Programas Informáticos , Sitios de Carácter Cuantitativo , Cuerpo Estriado/metabolismo , Análisis de la Célula Individual
3.
Food Res Int ; 194: 114939, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232552

RESUMEN

Understanding the epigenetic responses to mechanical wounding stress during the postharvest processing of oolong tea provides insight into the reprogramming of the tea genome and its impact on tea quality. Here, we characterized the 5mC DNA methylation and chromatin accessibility landscapes of tea leaves subjected to mechanical wounding stress during the postharvest processing of oolong tea. Analysis of the differentially methylated regions and preferentially accessible promoters revealed many overrepresented TF-binding motifs, highlighting sets of TFs that are likely important for the quality of oolong tea. Within these sets, we constructed a chromatin accessibility-mediated gene regulatory network specific to mechanical wounding stress. In combination with the results of the TF-centred yeast one-hybrid assay, we identified potential binding sites of CsMYC2 and constructed a gene regulatory network centred on CsMYC2, clarifying the potential regulatory role of CsMYC2 in the postharvest processing of oolong tea. Interestingly, highly accessible chromatin and hypomethylated cytosine were found to coexist in the promoter region of the indole biosynthesis gene (tryptophan synthase ß-subunit, CsTSB) under wounding stress, which indicates that these two important epigenetic regulatory mechanisms are jointly involved in regulating the synthesis of indole during the postharvest processing of oolong tea. These findings improve our understanding of the epigenetic regulatory mechanisms involved in quality formation during the postharvest processing of oolong tea.


Asunto(s)
Camellia sinensis , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Hojas de la Planta/genética , Camellia sinensis/genética , Regiones Promotoras Genéticas , Manipulación de Alimentos/métodos , Té/genética , Estrés Mecánico , Genoma de Planta , Redes Reguladoras de Genes , Cromatina/metabolismo , Cromatina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Front Immunol ; 15: 1423843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100669

RESUMEN

The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.


Asunto(s)
Vacuna BCG , Inmunidad Innata , Animales , Bovinos , Vacuna BCG/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Inyecciones Subcutáneas , Mycobacterium bovis/inmunología , Citocinas/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Vacunación , Memoria Inmunológica
5.
Theranostics ; 14(11): 4256-4277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113793

RESUMEN

Rationale: Posttranslational modifications of proteins have not been addressed in studies aimed at elucidating the cardioprotective effect of exercise in atherosclerotic cardiovascular disease (ASCVD). In this study, we reveal a novel mechanism by which exercise ameliorates atherosclerosis via lactylation. Methods: Using ApoE-/- mice in an exercise model, proteomics analysis was used to identify exercise-induced specific lactylation of MeCP2 at lysine 271 (K271). Mutation of the MeCP2 K271 lactylation site in aortic plaque macrophages was achieved by recombinant adenoviral transfection. Explore the molecular mechanisms by which motility drives MeCP2 K271 lactylation to improve plaque stability using ATAC-Seq, CUT &Tag and molecular biology. Validation of the potential target RUNX1 for exercise therapy using Ro5-3335 pharmacological inhibition. Results: we showed that in ApoE-/- mice, methyl-CpG-binding protein 2 (MeCP2) K271 lactylation was observed in aortic root plaque macrophages, promoting pro-repair M2 macrophage polarization, reducing the plaque area, shrinking necrotic cores, reducing plaque lipid deposition, and increasing collagen content. Adenoviral transfection, by introducing a mutant at lysine 271, overexpressed MeCP2 K271 lactylation, which enhanced exercise-induced M2 macrophage polarization and increased plaque stability. Mechanistically, the exercise-induced atheroprotective effect requires an interaction between MeCP2 K271 lactylation and H3K36me3, leading to increased chromatin accessibility and transcriptional repression of RUNX1. In addition, the pharmacological inhibition of the transcription factor RUNX1 exerts atheroprotective effects by promoting the polarization of plaque macrophages towards the pro-repair M2 phenotype. Conclusions: These findings reveal a novel mechanism by which exercise ameliorates atherosclerosis via MeCP2 K271 lactylation-H3K36me3/RUNX1. Interventions that enhance MeCP2 K271 lactylation have been shown to increase pro-repair M2 macrophage infiltration, thereby promoting plaque stabilization and reducing the risk of atherosclerotic cardiovascular disease. We also established RUNX1 as a potential drug target for exercise therapy, thereby providing guidance for the discovery of new targets.


Asunto(s)
Apolipoproteínas E , Aterosclerosis , Macrófagos , Proteína 2 de Unión a Metil-CpG , Animales , Humanos , Masculino , Ratones , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Placa Aterosclerótica/metabolismo , Procesamiento Proteico-Postraduccional
6.
bioRxiv ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39091800

RESUMEN

Single-cell CRISPR screens link genetic perturbations to transcriptional states, but high-throughput methods connecting these induced changes to their regulatory foundations are limited. Here we introduce Multiome Perturb-seq, extending single-cell CRISPR screens to simultaneously measure perturbation-induced changes in gene expression and chromatin accessibility. We apply Multiome Perturb-seq in a CRISPRi screen of 13 chromatin remodelers in human RPE-1 cells, achieving efficient assignment of sgRNA identities to single nuclei via an improved method for capturing barcode transcripts from nuclear RNA. We organize expression and accessibility measurements into coherent programs describing the integrated effects of perturbations on cell state, finding that ARID1A and SUZ12 knockdowns induce programs enriched for developmental features. Pseudotime analysis of perturbations connects accessibility changes to changes in gene expression, highlighting the value of multimodal profiling. Overall, our method provides a scalable and simply implemented system to dissect the regulatory logic underpinning cell state.

7.
Cell Commun Signal ; 22(1): 411, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180088

RESUMEN

BACKGROUND: p63 is a transcription factor with intrinsic pioneer factor activity and pleiotropic functions. Transforming growth factor ß (TGFß) signaling via activation and cooperative action of canonical, SMAD, and non-canonical, MAP-kinase (MAPK) pathways, elicits both anti- and pro-tumorigenic properties, including cell stemness and invasiveness. TGFß activates the ΔNp63 transcriptional program in cancer cells; however, the link between TGFß and p63 in unmasking the epigenetic landscape during tumor progression allowing chromatin accessibility and gene transcription, is not yet reported. METHODS: Small molecule inhibitors, including protein kinase inhibitors and RNA-silencing, provided loss of function analyses. Sphere formation assays in cancer cells, chromatin immunoprecipitation and mRNA expression assays were utilized in order to gain mechanistic evidence. Mass spectrometry analysis coupled to co-immunoprecipitation assays revealed novel p63 interactors and their involvement in p63-dependent transcription. RESULTS: The sphere-forming capacity of breast cancer cells was enhanced upon TGFß stimulation and significantly decreased upon ΔNp63 depletion. Activation of TGFß signaling via p38 MAPK signaling induced ΔNp63 phosphorylation at Ser 66/68 resulting in stabilized ΔNp63 protein with enhanced DNA binding properties. TGFß stimulation altered the ratio of H3K27ac and H3K27me3 histone modification marks, pointing towards higher H3K27ac and increased p300 acetyltransferase recruitment to chromatin. By silencing the expression of ΔNp63, the TGFß effect on chromatin remodeling was abrogated. Inhibition of H3K27me3, revealed the important role of TGFß as the upstream signal for guiding ΔNp63 to the TGFß/SMAD gene loci, as well as the indispensable role of ΔNp63 in recruiting histone modifying enzymes, such as p300, to these genomic regions, regulating chromatin accessibility and gene transcription. Mechanistically, TGFß through SMAD activation induced dissociation of ΔNp63 from NURD or NCOR/SMRT histone deacetylation complexes, while promoted the assembly of ΔNp63-p300 complexes, affecting the levels of histone acetylation and the outcome of ΔNp63-dependent transcription. CONCLUSIONS: ΔNp63, phosphorylated and recruited by TGFß to the TGFß/SMAD/ΔNp63 gene loci, promotes chromatin accessibility and transcription of target genes related to stemness and cell invasion.


Asunto(s)
Epigénesis Genética , Invasividad Neoplásica , Células Madre Neoplásicas , Factores de Transcripción , Factor de Crecimiento Transformador beta , Proteínas Supresoras de Tumor , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Epigénesis Genética/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosforilación , Regulación Neoplásica de la Expresión Génica , Transducción de Señal
8.
Elife ; 122024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190448

RESUMEN

Dravet syndrome (DS) is a devastating early-onset refractory epilepsy syndrome caused by variants in the SCN1A gene. A disturbed GABAergic interneuron function is implicated in the progression to DS but the underlying developmental and pathophysiological mechanisms remain elusive, in particularly at the chromatin level. Induced pluripotent stem cells (iPSCs) derived from DS cases and healthy donors were used to model disease-associated epigenetic abnormalities of GABAergic development. Chromatin accessibility was assessed at multiple time points (Day 0, Day 19, Day 35, and Day 65) of GABAergic differentiation. Additionally, the effects of the commonly used anti-seizure drug valproic acid (VPA) on chromatin accessibility were elucidated in GABAergic cells. The distinct dynamics in the chromatin profile of DS iPSC predicted accelerated early GABAergic development, evident at D19, and diverged further from the pattern in control iPSC with continued differentiation, indicating a disrupted GABAergic maturation. Exposure to VPA at D65 reshaped the chromatin landscape at a variable extent in different iPSC-lines and rescued the observed dysfunctional development of some DS iPSC-GABA. The comprehensive investigation on the chromatin landscape of GABAergic differentiation in DS-patient iPSC offers valuable insights into the epigenetic dysregulations associated with interneuronal dysfunction in DS. Moreover, the detailed analysis of the chromatin changes induced by VPA in iPSC-GABA holds the potential to improve the development of personalized and targeted anti-epileptic therapies.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Epilepsias Mioclónicas , Neuronas GABAérgicas , Células Madre Pluripotentes Inducidas , Ácido Valproico , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/metabolismo , Ácido Valproico/farmacología , Diferenciación Celular/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Cromatina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Anticonvulsivantes/farmacología
9.
Methods Mol Biol ; 2846: 243-261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141240

RESUMEN

We have developed a novel method for genomic footprinting of transcription factors (TFs) that detects potential gene regulatory relationships from DNase-seq data at the nucleotide level. We introduce an assay termed cross-link (XL)-DNase-seq, designed to capture chromatin interactions of dynamic TFs. A mild cross-linking step in XL-DNase-seq improves the detection of DNase-based footprints of dynamic TFs. The footprint strengths and detectability depend on an optimal cross-linking procedure. This method may help extract novel gene regulatory circuits involving previously undetectable TFs. The XL-DNase-seq method is illustrated here for activated mouse macrophage-like cells, which share several features with inflammatory macrophages.


Asunto(s)
Huella de ADN , Factores de Transcripción , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales , Ratones , Huella de ADN/métodos , Cromatina/genética , Cromatina/metabolismo , Macrófagos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Desoxirribonucleasas/metabolismo , Análisis de Secuencia de ADN/métodos
10.
Genome Biol ; 25(1): 202, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090688

RESUMEN

BACKGROUND: A number of deep learning models have been developed to predict epigenetic features such as chromatin accessibility from DNA sequence. Model evaluations commonly report performance genome-wide; however, cis regulatory elements (CREs), which play critical roles in gene regulation, make up only a small fraction of the genome. Furthermore, cell type-specific CREs contain a large proportion of complex disease heritability. RESULTS: We evaluate genomic deep learning models in chromatin accessibility regions with varying degrees of cell type specificity. We assess two modeling directions in the field: general purpose models trained across thousands of outputs (cell types and epigenetic marks) and models tailored to specific tissues and tasks. We find that the accuracy of genomic deep learning models, including two state-of-the-art general purpose models-Enformer and Sei-varies across the genome and is reduced in cell type-specific accessible regions. Using accessibility models trained on cell types from specific tissues, we find that increasing model capacity to learn cell type-specific regulatory syntax-through single-task learning or high capacity multi-task models-can improve performance in cell type-specific accessible regions. We also observe that improving reference sequence predictions does not consistently improve variant effect predictions, indicating that novel strategies are needed to improve performance on variants. CONCLUSIONS: Our results provide a new perspective on the performance of genomic deep learning models, showing that performance varies across the genome and is particularly reduced in cell type-specific accessible regions. We also identify strategies to maximize performance in cell type-specific accessible regions.


Asunto(s)
Cromatina , Aprendizaje Profundo , Genómica , Humanos , Cromatina/genética , Genómica/métodos , Secuencias Reguladoras de Ácidos Nucleicos , Especificidad de Órganos/genética , Epigénesis Genética , Modelos Genéticos
11.
Clin Transl Med ; 14(9): e70000, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39210544

RESUMEN

BACKGROUND: Various epigenetic regulations systematically govern gene expression in cells involving various biological processes. Dysregulation of the epigenome leads to aberrant transcriptional programs and subsequently results in diseases, such as cancer. Therefore, comprehensive profiling epigenomics is essential for exploring the mechanisms underlying gene expression regulation during development and disease. METHODS: In this study, we developed single-cell chromatin proteins and accessibility tagmentation (scCPA-Tag), a multi-modal single-cell epigenetic profile capturing technique based on barcoded Tn5 transposases and a droplet microfluidics platform. scCPA-Tag enables the simultaneous capture of DNA profiles of histone modification and chromatin accessibility in the same cell. RESULTS: By applying scCPA-Tag to K562 cells and a hepatocellular carcinoma (HCC) sample, we found that the silence of several chromatin-accessible genes can be attributed to lysine-27-trimethylation of the histone H3 tail (H3K27me3) modification. We characterized the epigenetic features of the tumour cells and different immune cell types in the HCC tumour tissue by scCPA-Tag. Besides, a tumour cell subtype (C2) with more aggressive features was identified and characterized by high chromatin accessibility and a lower abundance of H3K27me3 on tumour-promoting genes. CONCLUSIONS: Our multi-modal scCPA-Tag provides a comprehensive approach for exploring the epigenetic landscapes of heterogeneous cell types and revealing the mechanisms of gene expression regulation during developmental and pathological processes at the single-cell level. HIGHLIGHTS: scCPA-Tag offers a highly efficient and high throughput technique to simultaneously profile histone modification and chromatin accessibility within a single cell. scCPA-Tag enables to uncover multiple epigenetic modification features of cellular compositions within tumor tissues. scCPA-Tag facilitates the exploration of the epigenetic landscapes of heterogeneous cell types and provides the mechanisms governing gene expression regulation.


Asunto(s)
Carcinoma Hepatocelular , Cromatina , Epigénesis Genética , Neoplasias Hepáticas , Análisis de la Célula Individual , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Epigénesis Genética/genética , Cromatina/genética , Cromatina/metabolismo , Análisis de la Célula Individual/métodos , Epigenómica/métodos , Regulación Neoplásica de la Expresión Génica/genética
12.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201662

RESUMEN

Among the rich repertoire of strategies that allow plants to adapt to high-temperature stress is heat-stress memory. The mechanisms underlying the establishment and maintenance of heat-stress memory are poorly understood, although the chromatin opening state appears to be an important structural basis for maintaining heat-stress memory. The chromatin opening state is influenced by epigenetic modifications, making DNA and histone modifications important entry points for understanding heat-shock memory. Current research suggests that traditional heat-stress signaling pathway components might be involved in chromatin opening, thereby promoting the establishment of heat-stress memory in plants. In this review, we discuss the relationship between chromatin structure-based maintenance and the establishment of heat-stress memory. We also discuss the association between traditional heat-stress signals and epigenetic modifications. Finally, we discuss potential research ideas for exploring plant adaptation to high-temperature stress in the future.


Asunto(s)
Epigénesis Genética , Respuesta al Choque Térmico , Plantas , Respuesta al Choque Térmico/fisiología , Plantas/metabolismo , Plantas/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Fenómenos Fisiológicos de las Plantas
13.
Plant J ; 119(5): 2331-2348, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38976378

RESUMEN

The utilization of rice heterosis is essential for ensuring global food security; however, its molecular mechanism remains unclear. In this study, comprehensive analyses of accessible chromatin regions (ACRs), DNA methylation, and gene expression in inter-subspecific hybrid and its parents were performed to determine the potential role of chromatin accessibility in rice heterosis. The hybrid exhibited abundant ACRs, in which the gene ACRs and proximal ACRs were directly related to transcriptional activation rather than the distal ACRs. Regarding the dynamic accessibility contribution of the parents, paternal ZHF1015 transmitted a greater number of ACRs to the hybrid. Accessible genotype-specific target genes were enriched with overrepresented transcription factors, indicating a unique regulatory network of genes in the hybrid. Compared with its parents, the differentially accessible chromatin regions with upregulated chromatin accessibility were much greater than those with downregulated chromatin accessibility, reflecting a stronger regulation in the hybrid. Furthermore, DNA methylation levels were negatively correlated with ACR intensity, and genes were strongly affected by CHH methylation in the hybrid. Chromatin accessibility positively regulated the overall expression level of each genotype. ACR-related genes with maternal Z04A-bias allele-specific expression tended to be enriched during carotenoid biosynthesis, whereas paternal ZHF1015-bias genes were more active in carbohydrate metabolism. Our findings provide a new perspective on the mechanism of heterosis based on chromatin accessibility in inter-subspecific hybrid rice.


Asunto(s)
Cromatina , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Vigor Híbrido , Oryza , Oryza/genética , Oryza/metabolismo , Vigor Híbrido/genética , Cromatina/genética , Cromatina/metabolismo , Genoma de Planta/genética , Hibridación Genética , Genotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Mol Cell ; 84(15): 2822-2837.e11, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39025074

RESUMEN

Histone proteins affect gene expression through multiple mechanisms, including through exchange with histone variants. Recent findings link histone variants to neurological disorders, yet few are well studied in the brain. Most notably, widely expressed variants of H2B remain elusive. We applied recently developed antibodies, biochemical assays, and sequencing approaches to reveal broad expression of the H2B variant H2BE and defined its role in regulating chromatin structure, neuronal transcription, and mouse behavior. We find that H2BE is enriched at promoters, and a single unique amino acid allows it to dramatically enhance chromatin accessibility. Further, we show that H2BE is critical for synaptic gene expression and long-term memory. Together, these data reveal a mechanism linking histone variants to chromatin accessibility, transcriptional regulation, neuronal function, and memory. This work further identifies a widely expressed H2B variant and uncovers a single histone amino acid with profound effects on genomic structure.


Asunto(s)
Cromatina , Histonas , Memoria a Largo Plazo , Neuronas , Sinapsis , Histonas/metabolismo , Histonas/genética , Animales , Cromatina/metabolismo , Cromatina/genética , Memoria a Largo Plazo/fisiología , Neuronas/metabolismo , Ratones , Sinapsis/metabolismo , Sinapsis/genética , Regiones Promotoras Genéticas , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Transcripción Genética , Masculino , Humanos
15.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39026761

RESUMEN

Background: A number of deep learning models have been developed to predict epigenetic features such as chromatin accessibility from DNA sequence. Model evaluations commonly report performance genome-wide; however, cis regulatory elements (CREs), which play critical roles in gene regulation, make up only a small fraction of the genome. Furthermore, cell type specific CREs contain a large proportion of complex disease heritability. Results: We evaluate genomic deep learning models in chromatin accessibility regions with varying degrees of cell type specificity. We assess two modeling directions in the field: general purpose models trained across thousands of outputs (cell types and epigenetic marks), and models tailored to specific tissues and tasks. We find that the accuracy of genomic deep learning models, including two state-of-the-art general purpose models - Enformer and Sei - varies across the genome and is reduced in cell type specific accessible regions. Using accessibility models trained on cell types from specific tissues, we find that increasing model capacity to learn cell type specific regulatory syntax - through single-task learning or high capacity multi-task models - can improve performance in cell type specific accessible regions. We also observe that improving reference sequence predictions does not consistently improve variant effect predictions, indicating that novel strategies are needed to improve performance on variants. Conclusions: Our results provide a new perspective on the performance of genomic deep learning models, showing that performance varies across the genome and is particularly reduced in cell type specific accessible regions. We also identify strategies to maximize performance in cell type specific accessible regions.

16.
Plant Physiol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041412

RESUMEN

Arabidopsis (Arabidopsis thaliana) HISTONE DEACETYLASE 6 (HDA6) and HISTONE DEMETHYLASES LSD-LIKE 1 (LDL1) and LDL2 synergistically regulate the expression of long non-coding RNAs associated with H3Ac and H3K4me2. The underlying mechanisms of such highly coordinated interactions among genetic and epigenetic factors contributing to this collaborative regulation remain largely unclear. We analyzed all transposable elements (TEs) across the Arabidopsis genome and the individual and combined roles of HDA6 and LDL1/LDL2 by dissecting multi-layered epigenomes and their association with transcription. Instead of an individual synergistic effect, we observed dual synergistic and antagonistic effects, which are positively associated with H3Ac and H3K4me2 while maintaining a negative but moderate association with DNA methylation. Specifically, two modes of synergistic regulation were discovered in TEs: 74% are primarily regulated by HDA6, with less dependence on LDL1/LDL2, and the remaining 26% are co-regulated by both. Between the two modes, we showed that HDA6 has a strong effect on TE silencing, whereas LDL1/LDL2 plays a weaker yet crucial role in co-regulation with HDA6. Our results led to a model of epigenomic regulation - the differential de-repression between the two modes of synergistic regulation of TEs was determined by H3Ac and H3K4me2 levels, where TEs are in accessible chromatins free of DNA methylation, and this open chromatin environment precedes transcriptional changes and epigenome patterning. Our results discovered unbalanced effects of genetic factors in synergistic regulation through delicately coordinated multi-layered epigenomes and chromatin accessibility.

17.
Methods Mol Biol ; 2826: 55-63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017885

RESUMEN

The Assay for Transposase Accessible Chromatin (ATAC)-seq protocol is optimized to generate global maps of accessible chromatin using limited cell inputs. The Tn5 transposase tagmentation reaction simultaneously fragments and tags the accessible DNA with Illumina Nextera sequencing adapters. Fragmented and adapter tagged DNA is then purified and PCR amplified with dual indexing primers to generate a size-specific sequencing library. The One-Step workflow below outlines the Tn5 nuclei transposition from a range of cell inputs followed by PCR amplification to generate a sequencing library.


Asunto(s)
Linfocitos B , Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Transposasas , Cromatina/genética , Cromatina/metabolismo , Transposasas/metabolismo , Transposasas/genética , Linfocitos B/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biblioteca de Genes , Análisis de Secuencia de ADN/métodos , Reacción en Cadena de la Polimerasa/métodos , Animales , ADN/genética , Secuenciación de Inmunoprecipitación de Cromatina/métodos
18.
Clin Epigenetics ; 16(1): 86, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965562

RESUMEN

BACKGROUND: Presbycusis, also referred to as age-related hearing loss (ARHL), is a condition that results from the cumulative effects of aging on an individual's auditory capabilities. Given the limited understanding of epigenetic mechanisms in ARHL, our research focuses on alterations in chromatin-accessible regions. METHODS: We employed assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) in conjunction with unique identifier (UID) mRNA-seq between young and aging cochleae, and conducted integrated analysis as well as motif/TF-gene prediction. Additionally, the essential role of super-enhancers (SEs) in the development of ARHL was identified by comparative analysis to previous research. Meanwhile, an ARHL mouse model and an aging mimic hair cell (HC) model were established with a comprehensive identification of senescence phenotypes to access the role of SEs in ARHL progression. RESULTS: The control cochlear tissue exhibited greater chromatin accessibility than cochlear tissue affected by ARHL. Furthermore, the levels of histone 3 lysine 27 acetylation were significantly depressed in both aging cochlea and aging mimic HEI-OC1 cells, highlighting the essential role of SEs in the development of ARHL. The potential senescence-associated super-enhancers (SASEs) of ARHL were identified, most of which exhibited decreased chromatin accessibility. The majority of genes related to the SASEs showed obvious decreases in mRNA expression level in aging HCs and was noticeably altered following treatment with JQ1 (a commonly used SE inhibitor). CONCLUSION: The chromatin accessibility in control cochlear tissue was higher than that in cochlear tissue affected by ARHL. Potential SEs involved in ARHL were identified, which might provide a basis for future therapeutics targeting SASEs related to ARHL.


Asunto(s)
Envejecimiento , Cromatina , Cóclea , Elementos de Facilitación Genéticos , Presbiacusia , Animales , Ratones , Cóclea/metabolismo , Cóclea/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Envejecimiento/genética , Presbiacusia/genética , Presbiacusia/metabolismo , Elementos de Facilitación Genéticos/genética , Transcriptoma/genética , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Histonas/metabolismo , Histonas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino
19.
Res Sq ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38978599

RESUMEN

Background: STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. Results: Here, we describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~ 50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). Conclusions: HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.

20.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948758

RESUMEN

Annotation of the cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.e. regulatory elements) and gene expression in malignant cells versus normal mammary epithelial cells. These data unveil regulatory elements with that switch from silencers of gene expression in normal cells to enhancers of gene expression in cancer cells, leading to the upregulation of clinically relevant oncogenes. To translate the utility of this dataset into tractable models, we generated matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing, for each subtype, a conserved oncogenic gene expression program between in vitro and in vivo cells. Together, this work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of BC cells at single-cell resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA