Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Surv Ophthalmol ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222800

RESUMEN

The choroid is a thin layer of highly vascular uveal tissue enclosed externally by sclera and internally by neurosensory retinal tissue. The choroid is a "middle layer" ocular tissue with anatomically challenging surgical access. The primary functional role of the choroid is to provide rapid, oxygenated, and nutrient-rich blood flow to both the highly metabolic retinal pigment epithelium and outer retina (i.e. photoreceptors) while simultaneously removing waste products. Historically, incisional choroidal surgery (ICS) has involved tumor biopsy or excision, removal of choroidal neovascular complex or autologous choroidal translocations; however, ICS also holds unique potential for novel and innovative approaches to address macular pathology. Using large-animal surgical studies, researchers have explored ICS with the objective of finding safer and more effective techniques to reduce surgical risks such as bleeding, tissue contraction, and scar tissue formation. We explore the relevant anatomy and embryology, existing surgical techniques, discuss the implications for retinal drug delivery, define ICS guiding principles, and offer a rationale for implementation of ICS into a vitreoretinal surgical practice. We also identify other future challenges and anticipate future innovations that will advance ICS.

2.
Transl Vis Sci Technol ; 6(6): 5, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29134136

RESUMEN

PURPOSE: We hypothesized that the elastic nature of the choroid leads to tissue contraction following a full-thickness, sharp incision. Furthermore, we sought to quantify, measure, and compare tissue contraction in ex vivo porcine globes and human globes of various ages using predetermined variables. METHOD: A full-thickness, ex vivo choroidal incision was performed in either pig (n = 97) or human (n = 30) specimens. Variables included trephine diameter (1.5, 2.0, or 2.5 mm) versus a straight surgical blade, and temperature (1.7 °-4.4° vs. 36.6°F). Central centripetal and surround centrifugal tissue contractions were measured. Mean percentage tissue contraction was assessed as a ratio of trephine diameter to final tissue contraction measured immediately following each incision using a standardized device. RESULTS: For trephination in pig specimens, centripetal contraction ranged from 38% to 50% with a mean of 44%. Centrifugal contraction was approximately 15%. Human choroidal contraction was 39% and 15%, respectively, with a statistically significant inverse relationship to age (R2 = 0.35, P ≤ 0.01). Asymmetric contraction was noted when incisions were closer to choroidal attachment sites to the sclera, such as near vortex ampullae. Linear incisions resulted in contraction that correlated with incision length (R2 = 0.35, P ≤ 0.001). CONCLUSIONS: A full-thickness choroidal incision results in significant tissue contraction. For circular incisions, the centripetal contraction approaches 50% of the original incision size. For linear incisions, the contraction corresponds directly with incision length. In human specimens, there is less contraction with advancing age. TRANSLATIONAL RELEVANCE: Our findings have clinical relevance for choroidal biopsy, traumatic injury, and choroidal translocation surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA