Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Biosci ; 23(11): e2300090, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37376773

RESUMEN

A significant issue in cancer biology is finding anticancer therapies that effectively kill cancer cells. Through the use of several aldehydes, Schiff bases based on branched poly (p-hydroxy styrene) are created. The branched polymer is first chloroacetylated, then aminated with 1,4-phenylenediamine, and finally, aldehydes are reacted with the aminated polymer to produce the Schiff base compounds. Through the utilization of FTIR, TGA, XRD, NMR, and elemental analysis, all synthesized Schiff-bases are identified and characterized. Further, the antineoplastic potential of all Schiff bases is evaluated against different cancer cell lines. The results gained from this study indicate that the Schiff base polymers have cytotoxic power against cancer cells depending on cancer cell type and this antiproliferation potency is dose-concentration dependent. Importantly, the prepared S1 Schiff-base polymer shows potent cytotoxicity and is able to trigger the apoptosis and reactive oxygen species (ROS) in MCF-7 cells. Further, it downregulates VEGFR protein expression. The Schiff base polymers would have extensive applications in the biological disciplines.


Asunto(s)
Antineoplásicos , Bases de Schiff , Humanos , Bases de Schiff/farmacología , Bases de Schiff/química , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química , Aldehídos , Polímeros , Estirenos
2.
J Pharm Bioallied Sci ; 7(1): 81-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25709343

RESUMEN

In search of new leads toward potent antimicrobial agent, an array of novel derivatives of 2-hydrazinyl-N-N, diphenyl acetamide has been synthesized from the chloroacetylation reaction of diphenylamine (DPA). For this, a series of DPA derivatives were prepared by replacing chlorine with hydrazine hydrate in alcoholic medium and 2-hydrazino-N, N-diphenylacetamide was synthesized. The 2-hydrazino-N, N-diphenylacetamide was further subjected to reaction with various aromatic aldehydes in presence of glacial acetic acid in methanol. The synthesized compounds were characterized by their IR, 1HNMR spectral data and elemental analysis. The compounds were screened for antibacterial and antifungal activity by cup plate method. 2-(2-Benzylidenehydrazinyl)-N, N-diphenylacetamide (A1); 2-(2-(3-methylbenzylidene) hydrazinyl)-N, N-diphenyl-acetamide (A5) and 2-(2-(2-nitrobenzylidine) hydrazinyl)-N, N-diphenyl-acetamide compounds (A7) showed significant antimicrobial as well as antifungal activity. Diphenylamine compounds may be explored as potent antimicrobial and antifungal compounds.

3.
Carbohydr Polym ; 116: 60-6, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25458273

RESUMEN

The synthesis and characterization of aminoacetyl cellulose and thioacetyl cellulose is presented in this paper. Cellulose was first chemically modified with chloroacetyl chloride using N,N-dimethylformamide (DMF) as reaction medium. The maximum substitution of hydroxyl groups of cellulose was achieved reacting in the presence of 6 equiv. of chloroacetyl chloride over 24 h at 60 °C. DMF were then recovered by fractional distillation of the media. In the next step, chloroacetyl cellulose was reacted with either secondary amines or thiols. The reactions were initially heterogeneous in hot DMF. As the reactions proceeded, homogenous mixtures were obtained. Highly substituted cellulose derivatives were achieved via this method. The success of the reactions was confirmed by ATR-IR and NMR spectroscopy. Various pulps were used as cellulose source. The resulting products were found to be thermally stable and have glass transition temperatures around 120 °C. Gel permeation chromatography (GPC) indicated that degradation of the cellulose backbone had occurred. The cellulose derivatives were then processed into films. Their potential, as packaging films, was then studied from the view-point of their moisture and oxygen barrier properties, as well as their tensile properties.


Asunto(s)
Celulosa/análogos & derivados , Celulosa/química , Compuestos de Sulfhidrilo/química , Aminación , Dimetilformamida/química , Solubilidad , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA