Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 10(17): e36981, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281487

RESUMEN

This paper demonstrates the potential of Raman spectroscopy for differentiating neoplastic from non-neoplastic colon tumors, obtained with the CAM (chicken chorioallantoic membrane) model. For the CAM model two human cell lines were used to generate two types of tumors, the RKO cell line for neoplastic colon tumors and the NCM460 cell line for non-neoplastic colon tumors. The Raman spectra were acquired with a 785 nm excitation laser. The measured Raman spectra from the CAM samples (n = 14) were processed with several methods for baseline correction and to remove artifacts. The corrected spectra were analyzed with PCA (principal component analysis). Additionally, machine learning based algorithms were used to create a model capable of classifying neoplastic and non-neoplastic tumors. The principal component scores showed a clear differentiation between neoplastic and non-neoplastic colon tumors. The classification model had an accuracy of 93 %. Thus, a complete methodology to process and analyze Raman spectra was validated, using a rapid, accessible, and well-established tumor model that mimics the human tumor pathology with minor ethical concerns.

2.
Biomater Adv ; 153: 213539, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37429047

RESUMEN

Pre-formed hydrogel scaffolds have emerged as favorable vehicles for tissue regeneration, promoting minimally invasive treatment of native tissue. However, due to the high degree of swelling and inherently poor mechanical properties, development of complex structural hydrogel scaffolds at different dimensional scales has been a continuous challenge. Herein, we take a novel approach at the intersections of engineering design and bio-ink chemistry to develop injectable pre-formed structural hydrogel scaffolds fabricated via visible light (VL) induced digital light processing (DLP). In this study, we first determined the minimum concentration of poly(ethylene glycol) diacrylate (PEGDA) to be added to the gelatin methacrylate (GelMA) bio-ink in order to achieve scalable and high printing-fidelity with desired cell adhesion, viability, spreading, and osteogenic differentiation characteristics. Despite the advantages of hybrid GelMA-PEGDA bio-ink in improving scalability and printing-fidelity, compressibility, shape-recovery, and injectability of the 3D bioprinted scaffolds were compromised. To restore these needed characteristics for minimally invasive tissue regeneration applications, we performed topological optimization to design highly compressible and injectable pre-formed (i.e., 3D bioprinted) microarchitectural scaffolds. The designed injectable pre-formed microarchitectural scaffolds showed a great capacity to retain the viability of the encapsulated cells (>72 % after 10 cycles of injection). Lastly, ex ovo chicken chorioallantoic membrane (CAM) studies revealed that the optimized injectable pre-formed hybrid hydrogel scaffold is biocompatible and supports angiogenic growth.


Asunto(s)
Osteogénesis , Andamios del Tejido , Andamios del Tejido/química , Hidrogeles , Luz , Gelatina/química
3.
Cancers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831454

RESUMEN

The objective of this study is to use imaging and histopathological analysis to characterize and monitor microvascular responses to photodynamic therapy (PDT). In vivo chicken chorioallantoic membranes (CAMs) and a stimulated malignant oral lesions animal model were used to determine the blood flow and the biological activities of Photofrin® (2.5 mg/kg) exposed to different laser power densities at 630 nm. The vascular changes, the velocity of the blood flow, the speckle flow index (SFI) of fluorescence changes, and ultrastructure damage in the microvasculature before and after PDT were recorded. The subcellular localization of Photofrin® revealed satisfactory uptake throughout the cytoplasm of human red blood cells at 10 s and 20 s before PDT. The mean blood-flow velocities of the veins and arteries were 500 ± 40 and 1500 ± 100 µm/s, respectively. A significant decrease in the velocities of the blood flow in the veins and arteries was detected in the CAM model after PDT. The veins and arteries of CAMs, exposed to the power densities of 80, 100, and 120 mW/cm2, had average blood-flow velocities of 100 ± 20, 60 ± 10, and 0 µm/s and 300 ± 50, 150 ± 30, and 0 µm/s, respectively. In the stimulated malignant oral lesions animal model, the treated tumors exhibited hemorrhage and red blood cell extravasation after PDT. The oxyhemoglobin and total hemoglobin levels decreased, which resulted in a decrease in tissue oxygen saturation, while the deoxyhemoglobin levels increased. PDT using Photofrin® has the ability to cause the destruction of the targeted microvasculature under nonthermal mechanisms selectively.

4.
Biomed Pharmacother ; 157: 114041, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36423543

RESUMEN

Melatonin is a molecule with different antitumor actions in breast cancer and has been described as an inhibitor of vascular endothelial growth factor (VEGF). Despite the recognition of the key role exerted by VEGF in tumor angiogenesis, limitations arise when developing models to test new antiangiogenic molecules. Thus, the aim of this study was to develop rapid, economic, high capacity and easy handling angiogenesis assays to test the antiangiogenic effects of melatonin and demonstrate its most effective dose to neutralize and interfere with the angiogenic sprouting effect induced by VEGF and MCF-7. To perform this, 3D endothelial cell (HUVEC) spheroids and a chicken embryo chorioallantoic membrane (CAM) assay were used. The results showed that VEGF and MCF-7 were able to stimulate the sprouting of the new vessels in 3D endothelial spheroids and the CAM assay, and that melatonin had an inhibitory effect on angiogenesis. Specifically, as the 1 mM pharmacological dose was the only effective dose able to inhibit the formation of ramifications around the alginate in the CAM assay model, this inhibition was shown to occur in a dose-dependent manner. Taken together, these techniques represent novel tools for the development of antiangiogenic molecules such as melatonin, with possible implications for the therapy of breast cancer.


Asunto(s)
Melatonina , Neoplasias , Animales , Embrión de Pollo , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Membrana Corioalantoides/metabolismo , Melatonina/uso terapéutico , Factores de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Patológica/metabolismo , Células Endoteliales , Inductores de la Angiogénesis/farmacología , Células Endoteliales de la Vena Umbilical Humana , Neoplasias/tratamiento farmacológico
5.
Cancers (Basel) ; 14(4)2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35205818

RESUMEN

The combination of Resminostat (HDACi) and Ruxolitinib (JAKi) exerted cytotoxic effects and inhibited proliferation of CTCL cell lines (MyLa, SeAx) in previously published work. A xenograft tumor formation was produced by implanting the MyLa or SeAx cells on top of the chick embryo chorioallantoic membrane (CAM). The CAM assay protocol was developed to monitor the metastatic properties of CTCL cells and the effects of Resminostat and/or Ruxolitinib in vivo. In the spontaneous CAM assays, Resminostat and Ruxolitinib treatment inhibited the cell proliferation (p < 0.001) of MyLa and SeAx, and induced cell apoptosis (p < 0.005, p < 0.001, respectively). Although monotherapies reduced the size of primary tumors in the metastasis CAM assay, the drug combination exhibited a significant inhibition of primary tumor size (p < 0.0001). Furthermore, the combined treatment inhibited the intravasation of MyLa (p < 0.005) and SeAx cells (p < 0.0001) in the organs, as well as their extravasation to the liver (p < 0.0001) and lung (p < 0.0001). The drug combination also exerted a stronger inhibitory effect in migration (p < 0.0001) rather in invasion (p < 0.005) of both MyLa and SeAx cells. It further reduced p-p38, p-ERK, p-AKT, and p-STAT in MyLa cells, while it decreased p-ERK and p-STAT in SeAx cells in CAM tumors. Our data demonstrated that the CAM assay could be employed as a preclinical in vivo model in CTCL for pharmacological testing. In agreement with previous in vitro data, the combination of Resminostat and Ruxolitinib was shown to exert antitumor effects in CTCL in vivo.

6.
Transl Oncol ; 14(11): 101203, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34416424

RESUMEN

Chemotherapy resistant high grade serous ovarian cancer remains a clinically intractable disease with a high rate of mortality. We tested a novel glycosylated antitumor ether lipid called l-Rham to assess the in vitro and in vivo efficacy on high grade serous ovarian cancer cell lines and patient samples. l-Rham effectively kills high grade serous ovarian cancer cells grown as 2D or 3D cultures in a dose and time dependent manner. l-Rham efficacy was tested in vivo in a chicken allantoic membrane/COV362 xenograft model, where l-Rham activity was as effective as paclitaxel in reducing tumor weight and metastasis. The efficacy of l-Rham to reduce OVCAR3 tumor xenografts in NRG mice was assessed in low and high tumor burden models. l-Rham effectively reduced tumor formation in the low tumor burden group, and blocked ascites formation in low and high tumor burden animals. l-Rham demonstrates efficacy against OVCAR3 tumor and ascites formation in vivo in NRG mice, laying the foundation for further development of this drug class for the treatment of high grade serous ovarian cancer patients.

7.
Cancers (Basel) ; 13(9)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925455

RESUMEN

BACKGROUND: Microbeam Radiation Therapy (MRT) induces a transient vascular permeability window, which offers a novel drug-delivery system for the preferential accumulation of therapeutic compounds in tumors. MRT is a preclinical cancer treatment modality that spatially fractionates synchrotron X-rays into micrometer-wide planar microbeams which can induce transient vascular permeability, especially in the immature tumor vessels, without compromising vascular perfusion. Here, we characterized this phenomenon using Chicken Chorioallantoic Membrane (CAM) and demonstrated its therapeutic potential in human glioblastoma xenografts in mice. METHODS: the developing CAM was exposed to planar-microbeams of 75 Gy peak dose with Synchrotron X-rays. Similarly, mice harboring human glioblastoma xenografts were exposed to peak microbeam doses of 150 Gy, followed by treatment with Cisplatin. Tumor progression was documented by Magnetic Resonance Imaging (MRI) and caliper measurements. RESULTS: CAM exposed to MRT exhibited vascular permeability, beginning 15 min post-irradiation, reaching its peak from 45 min to 2 h, and ending by 4 h. We have deemed this period the "permeability window". Morphological analysis showed partially fragmented endothelial walls as the cause of the increased transport of FITC-Dextran into the surrounding tissue and the extravasation of 100 nm microspheres (representing the upper range of nanoparticles). In the human glioblastoma xenografts, MRI measurements showed that the combined treatment dramatically reduced the tumor size by 2.75-fold and 5.25-fold, respectively, compared to MRT or Cisplatin alone. CONCLUSIONS: MRT provides a novel mechanism for drug delivery by increasing vascular transpermeability while preserving vessel integrity. This permeability window increases the therapeutic index of currently available chemotherapeutics and could be combined with other therapeutic agents such as Nanoparticles/Antibodies/etc.

8.
Methods Mol Biol ; 2294: 17-26, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33742391

RESUMEN

The CAM model enables an in vivo analysis of the individual sub-steps of the metastatic cascade like local invasion, intravasation, or the establishment of metastasis in particular organs. Incubated fertilized chicken eggs are inoculated with human tumor cells and further processed for up to 9-10 days. The invasion and metastasis of these cells is then detected quantitatively with high specificity and sensitivity by means of a PCR for human ALU sequences, using the genomic DNA isolated from distant portions of the CAM, as well as from diverse internal organs of the developing embryo.


Asunto(s)
Membrana Corioalantoides/patología , Invasividad Neoplásica/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Elementos Alu , Animales , Embrión de Pollo , Membrana Corioalantoides/metabolismo , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Células Tumorales Cultivadas
9.
Pharmaceutics ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35056909

RESUMEN

The treatment of uveal melanoma and its metastases has not evolved sufficiently over the last decades in comparison to other tumour entities, posing a great challenge in the field of ocular oncology. Despite improvements in the conventional treatment regime and new discoveries about the genetic and molecular background of the primary tumour, effective treatment strategies to either prevent tumours or treat patients with advanced or metastatic disease are still lacking. New therapeutic options are necessary in order to achieve satisfactory local tumour control, reduce the risk of metastasis development, and preserve the eyeball and possibly the visual function of the eye. The development of in vivo model systems remains crucial for the identification and investigation of potential novel treatment modalities. The aim of this study was the optimisation of the chorioallantoic membrane (CAM) model for uveal melanoma research. We analysed the established CAM assay and its modification after the implantation of three-dimensional spheroids. The chorioallantoic membrane of a chick embryo was used to implant uveal melanoma-cell-line-derived spheroids in order to study their growth rate, angiogenic potential, and metastatic capability. Using the UM 92.1, UPMD2, UPMM3, and Mel270 cell lines, we were able to improve the viability of the embryos from 20% to >80% and to achieve up to a fourfold volume increase of the transplanted spheroid masses. The results point to the value of an optimised chicken embryo assay as an in vivo model for testing novel therapies for uveal melanoma by simplifying the research conditions and by contributing to a considerable reduction in animal experiments.

10.
Metabolites ; 10(7)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605263

RESUMEN

BACKGROUND: Dysregulated cancer metabolism is associated with acquired resistance to chemotherapeutic treatment and contributes to the activation of cancer survival mechanisms. However, which metabolic pathways are activated following treatment often remains elusive. The combination of chicken embryo tumor models (in ovo) with metabolomics phenotyping could offer a robust platform for drug testing. Here, we assess the potential of this approach in the treatment of an in ovo triple negative breast cancer with doxorubicin. METHODS: MB-MDA-231 cells were grafted in ovo. The resulting tumors were then treated with doxorubicin or dimethyl sulfoxide (DMSO) for six days. Tumors were collected and analyzed using a global untargeted metabolomics and comprehensive lipidomics. RESULTS: We observed a significant suppression of tumor growth in the doxorubicin treated group. The metabolic profiles of doxorubicin and DMSO-treated tumors were clearly separated in a principle component analysis. Inhibition of glycolysis, nucleotide synthesis, and glycerophospholipid metabolism appear to be triggered by doxorubicin treatment, which could explain the observed suppressed tumor growth. In addition, metabolic cancer survival mechanisms could be supported by an acceleration of antioxidative pathways. CONCLUSIONS: Metabolomics in combination with in ovo tumor models provide a robust platform for drug testing to reveal tumor specific treatment targets such as the antioxidative tumor capacity.

11.
Drug Deliv Transl Res ; 10(6): 1729-1747, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32683647

RESUMEN

Nose-to-brain delivery is a promising approach to target drugs into the brain, avoiding the blood-brain barrier and other drawbacks related to systemic absorption, and enabling an effective and safer treatment of diseases such as glioblastoma (GBM). Innovative materials and technologies that improve residence time in the nasal cavity and modulate biological interactions represent a great advance in this field. Mucoadhesive nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA) and oligomeric chitosan (OCS) were designed as a rational strategy and potential platform to co-deliver alpha-cyano-4-hydroxycinnamic acid (CHC) and the monoclonal antibody cetuximab (CTX) into the brain, by nasal administration. The influence of formulation and process variables (O/Aq volume ratio, Pluronic concentration, PLGA concentration, and sonication time) on the properties of CHC-loaded NPs (size, zeta potential, PDI and entrapment efficiency) was investigated by a two-level full factorial design (24). Round, stable nano-sized particles (213-875 nm) with high positive surface charge (+ 33.2 to + 58.9 mV) and entrapment efficiency (75.69 to 93.23%) were produced by the emulsification/evaporation technique. Optimal process conditions were rationally selected based on a set of critical NP attributes (258 nm, + 37 mV, and 88% EE) for further conjugation with CTX. The high cytotoxicity of CHC-loaded NPs and conjugated NPs was evidenced for different glioma cell lines (U251 and SW1088). A chicken chorioallantoic membrane assay highlighted the expressive antiangiogenic activity of CHC-loaded NPs, which was enhanced for conjugated NPs. The findings of this work demonstrated the potential of this nanostructured polymeric platform to become a novel therapeutic alternative for GBM treatment. Graphical abstract.


Asunto(s)
Encéfalo , Quitosano , Glioblastoma , Nanopartículas , Administración Intranasal , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Quitosano/uso terapéutico , Glioblastoma/tratamiento farmacológico , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
12.
Eur J Pharm Biopharm ; 148: 1-9, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31917332

RESUMEN

Metastatic tumors are the main cause of cancer-related death, as the invading cancer cells disrupt normal functions of distant organs and are nearly impossible to eradicate by traditional cancer therapeutics. This is of special concern when the cancer has created multiple metastases and extensive surgery would be too dangerous to execute. Therefore, combination chemotherapy is often the selected treatment form. However, drug cocktails often have severe adverse effects on healthy cells, whereby the development of targeted drug delivery could minimize side-effects of drugs and increase the efficacy of the combination therapy. In this study, we utilized the folate antagonist methotrexate (MTX) as targeting ligand conjugated onto mesoporous silica nanoparticles (MSNs) for selective eradication of folate receptor-expressing invasive thyroid cancer cells. The MSNs was subsequently loaded with the drug fingolimod (FTY720), which has previously been shown to efficiently inhibit proliferation and invasion of aggressive thyroid cancer cells. To assess the efficiency of our carrier system, comprehensive in vitro methods were employed; including flow cytometry, confocal microscopy, viability assays, invasion assay, and label-free imaging techniques. The in vitro results show that MTX-conjugated and FTY720-loaded MSNs potently attenuated both the proliferation and invasion of the cancerous thyroid cells while keeping the off-target effects in normal thyroid cells reasonably low. For a more physiologically relevant in vivo approach we utilized the chick chorioallantoic membrane (CAM) assay, showing decreased invasive behavior of the thyroid derived xenografts and an increased necrotic phenotype compared to tumors that received the free drug cocktail. Thus, the developed multidrug-loaded MSNs effectively induced apoptosis and immobilization of invasive thyroid cancer cells, and could potentially be used as a carrier system for targeted drug delivery for the treatment of diverse forms of aggressive cancers that expresses folate receptors.


Asunto(s)
Clorhidrato de Fingolimod/administración & dosificación , Metotrexato/administración & dosificación , Nanopartículas , Neoplasias de la Tiroides/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/patología , Sistemas de Liberación de Medicamentos , Clorhidrato de Fingolimod/farmacología , Receptores de Folato Anclados a GPI/metabolismo , Humanos , Metotrexato/farmacología , Invasividad Neoplásica/prevención & control , Dióxido de Silicio/química , Neoplasias de la Tiroides/patología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Invest New Drugs ; 38(4): 1044-1055, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31781904

RESUMEN

Gliomas account for nearly 70% of the central nervous system tumors and present a median survival of approximately 12-17 months. Studies have shown that administration of novel natural antineoplastic agents is been highly effective for treating gliomas. This study was conducted to investigate the antitumor potential (in vitro and in vivo) of Miconia chamissois Naudin for treating glioblastomas. We investigated the cytotoxicity of the chloroform partition and its sub-fraction in glioblastoma cell lines (GAMG and U251MG) and one normal cell line of astrocytes. The fraction showed cytotoxicity and was selective for tumor cells. Characterization of this fraction revealed a single compound, Matteucinol, which was first identified in the species M. chamissois. Matteucinol promoted cell death via intrinsic apoptosis in the adult glioblastoma lines. In addition, Matteucinol significantly reduced the migration, invasion, and clonogenicity of the tumor cells. Notably, it also reduced tumor growth and angiogenesis in vivo. Moreover, this agent showed synergistic effects with temozolomide, a chemotherapeutic agent commonly used in clinical practice. Our study demonstrates that Matteucinol from M chamissois is a promising compound for the treatment of glioblastomas and may be used along with the existing chemotherapeutic agents for more effective treatment.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Cromonas/uso terapéutico , Glioblastoma/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Cromonas/aislamiento & purificación , Cromonas/farmacología , Glioblastoma/irrigación sanguínea , Humanos , Melastomataceae , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Extractos Vegetales , Hojas de la Planta
14.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396951

RESUMEN

The high plasticity of cancer stem-like cells (CSCs) allows them to differentiate and proliferate, specifically when xenotransplanted subcutaneously into immunocompromised mice. CSCs are highly tumorigenic, even when inoculated in small numbers. Thus, in vivo limiting dilution assays (LDA) in mice are the current gold standard method to evaluate CSC enrichment and activity. The chick embryo chorioallantoic membrane (CAM) is a low cost, naturally immune-incompetent and reproducible model widely used to evaluate the spontaneous growth of human tumor cells. Here, we established a CAM-LDA assay able to rapidly reproduce tumor specificities-in particular, the ability of the small population of CSCs to form tumors. We used a panel of organotropic metastatic breast cancer cells, which show an enrichment in a stem cell gene signature, enhanced CD44+/CD24-/low cell surface expression and increased mammosphere-forming efficiency (MFE). The size of CAM-xenografted tumors correlate with the number of inoculated cancer cells, following mice xenograft growth pattern. CAM and mice tumors are histologically comparable, displaying both breast CSC markers CD44 and CD49f. Therefore, we propose a new tool for studying CSC prevalence and function-the chick CAM-LDA-a model with easy handling, accessibility, rapid growth and the absence of ethical and regulatory constraints.


Asunto(s)
Neoplasias de la Mama/patología , Membrana Corioalantoides , Células Madre Neoplásicas/patología , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Embrión de Pollo , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Ratones , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cancers (Basel) ; 11(12)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783534

RESUMEN

Patients with advanced colorectal cancer (CRC) still depend on chemotherapy regimens that are associated with significant limitations, including resistance and toxicity. The contribution of tyrosine kinase inhibitors (TKIs) to the prolongation of survival in these patients is limited, hampering clinical implementation. It is suggested that an optimal combination of appropriate TKIs can outperform treatment strategies that contain chemotherapy. We have previously identified a strongly synergistic drug combination (SDC), consisting of axitinib, erlotinib, and dasatinib that is active in renal cell carcinoma cells. In this study, we investigated the activity of this SDC in different CRC cell lines (SW620, HT29, and DLD-1) in more detail. SDC treatment significantly and synergistically decreased cell metabolic activity and induced apoptosis. The translation of the in-vitro-based results to in vivo conditions revealed significant CRC tumor growth inhibition, as evaluated in the chicken chorioallantoic membrane (CAM) model. Phosphoproteomics analysis of the tested cell lines revealed expression profiles that explained the observed activity. In conclusion, we demonstrate promising activity of an optimized mixture of axitinib, erlotinib, and dasatinib in CRC cells, and suggest further translational development of this drug mixture.

16.
Photodiagnosis Photodyn Ther ; 27: 255-267, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31226444

RESUMEN

BACKGROUND: Oral cavity squamous cell carcinoma is a common cancer of the head and neck region. Due to the frequency of diagnoses, high rate of mortality, mutilating nature of classic therapy and numerous complications, new methods of treatment are being sought. One promising solution for treatment which is utilized in many fields of oncology is photodynamic therapy. The purpose of this article is to present a general overview of the use of photodynamic therapy in preclinical in vitro studies. MATERIALS AND METHODS: A literature search for articles corresponding to the topic of this review was performed using the PubMed and MEDLINE databases using the following keywords: 'oral cavity squamous cell carcinoma,' 'photodynamic therapy,' 'photosensitizer(s),' 'in vitro,' 'cell culture(s),' 'spheroids,' 'CAM model', and 'in vivo.' RESULTS: Most of the previous work found in the literature search concerns research on the use of various photosensitizers and the determination of their level of phototoxicity against cell lines. CONCLUDING REMARKS: Research on the photodynamic effect in cell lines may be useful in establishing the mechanisms and effectiveness of the photodynamic method as a starting point for clinical trials. Studies on spheroidal models allows for testing photodynamic therapy under more clinical-like conditions. The Chick Chorioallantoic Membrane Assay provides information about the vascular changes after treatment.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Humanos , Técnicas In Vitro , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/efectos adversos
17.
Artículo en Inglés | MEDLINE | ID: mdl-32296254

RESUMEN

Quantification of protein concentrations is often a static and tissue destructive technique. Paired-agent imaging (PAI) using matched targeted and untargeted agents has been established as a dynamic method for quantifying the extracellular domain of epidermal growth factor receptor (EGFR) in vivo in a variety of tumor lines. Here we extend the PAI model to simultaneously quantify the extracellular and intracellular regions of EGFR using novel cell membrane permeable fluorescent small molecules, TRITC-erlotinib (targeted) and BODIPY-N-erlotinib (non-binding control isoform) synthesized in house. An EGFR overexpressing squamous cell carcinoma cell xenograft tumor, A431, was implanted on the chorioallantoic membrane (CAM) of the embryonated chicken egg. In total six fluorescent molecules were administered and monitored over 1 h using multi-spectral imaging. EGFR concentrations were determined using both extracellular and intracellular PAI methods. The fluorescent molecules used for extracellular PAI were ABY-029, an anti-EGFR Affibody molecule conjugated to IRDye 800CW, and a Control Imaging Agent Affibody molecule conjugated to IRDye 680RD. The intracellular PAI (iPAI) fluorescent molecules were cell membrane penetrating TRITC-erlotinib, BODIPY-N-erlotinb, and BODIPY TR carboxylate, as well as cell membrane impermeant control agent, Alexa Fluor 647 carboxylate. Results from simultaneous imaging of both the extracellular and intracellular binding domains of EGFR indicate that concentrations of intracellular EGFR are higher than extracellular. This is anticipated as EGFR exists in two distinct populations in cells, cell membrane bound and internalized, activated protein. iPAI is a promising new method for quantifying intracellular proteins in a rapid tumor model on the chicken CAM.

18.
Cell Physiol Biochem ; 48(5): 2084-2090, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30099448

RESUMEN

BACKGROUND/AIMS: Angiogenesis plays a key role during embryonic development. The vascular endothelin (ET) system is involved in the regulation of angiogenesis. Lipopolysaccharides (LPS) could induce angiogenesis. The effects of ET blockers on baseline and LPS-stimulated angiogenesis during embryonic development remain unknown so far. METHODS: The blood vessel density (BVD) of chorioallantoic membranes (CAMs), which were treated with saline (control), LPS, and/or BQ123 and the ETB blocker BQ788, were quantified and analyzed using an IPP 6.0 image analysis program. Moreover, the expressions of ET-1, ET-2, ET3, ET receptor A (ETRA), ET receptor B (ETRB) and VEGFR2 mRNA during embryogenesis were analyzed by semi-quantitative RT-PCR. RESULTS: All components of the ET system are detectable during chicken embryogenesis. LPS increased angiogenesis substantially. This process was completely blocked by the treatment of a combination of the ETA receptor blockers-BQ123 and the ETB receptor blocker BQ788. This effect was accompanied by a decrease in ETRA, ETRB, and VEGFR2 gene expression. However, the baseline angiogenesis was not affected by combined ETA/ETB receptor blockade. CONCLUSION: During chicken embryogenesis, the LPS-stimulated angiogenesis, but not baseline angiogenesis, is sensitive to combined ETA/ETB receptor blockade.


Asunto(s)
Antagonistas de los Receptores de la Endotelina B/farmacología , Lipopolisacáridos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Animales , Pollos , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Endotelina-1/genética , Endotelina-1/metabolismo , Oligopéptidos/farmacología , Péptidos Cíclicos/farmacología , Piperidinas/farmacología , Receptor de Endotelina A/química , Receptor de Endotelina A/genética , Receptor de Endotelina B/química , Receptor de Endotelina B/genética , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Methods Cell Biol ; 143: 401-428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29310789

RESUMEN

The extracellular matrix molecule tenascin-C (TNC) has received a lot of attention since its discovery 30 years ago because of its multiple roles in tissue repair, and in pathologies such as chronic inflammation, fibrosis, and cancer. Mouse models with high or no TNC expression have enabled the validation of key roles for TNC in immunity and angiogenesis. In parallel, many approaches including primary cell or organ cultures have shed light on the cellular and molecular mechanisms by which TNC exerts its multiple actions in vivo. Here, we will describe assays that investigate its antiadhesive properties and that measure the effect of TNC on the actin cytoskeleton, cell survival, proliferation, and migration. We will also describe assays to assess the impact of TNC on endothelial and immune cells in cell and organ culture, and to compare the responses of fibroblasts from normal and diseased tissues.


Asunto(s)
Bioensayo/métodos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Imagen Molecular/métodos , Tenascina/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Bioensayo/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Pollos , Membrana Corioalantoides , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Modelos Animales , Neovascularización Fisiológica/fisiología , Tenascina/análisis
20.
Urol Oncol ; 35(9): 544.e11-544.e23, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28551413

RESUMEN

BACKGROUND: Rapid development of novel treatment options demands valid preclinical screening models for urothelial carcinoma (UC). The translational value of high-throughput drug testing using 2-dimensional (2D) cultures is limited while for xenograft models handling efforts and costs often become prohibitive for larger-scale drug testing. Therefore, we investigated to which extent the chicken chorioallantoic membrane (CAM) assay might provide an alternative model to study antineoplastic treatment approaches for UC. METHODS: The ability of 8 human UC cell lines (UCCs) to form tumors after implantation on CAMs was investigated. Epithelial-like RT-112 and mesenchymal-like T-24 UCCs in cell culture or as CAM tumors were treated with cisplatin alone or combined with histone deacetylase inhibitors (HDACi) romidepsin and suberanilohydroxamic acid. Tumor weight, size, and bioluminescence activity were monitored; tumor specimens were analyzed by histology and immunohistochemistry. Western blotting and quantitative real time polymerase chain reaction were used to measure protein and mRNA expression. RESULTS: UCCs were reliably implantable on the CAM, but tumor development varied among cell lines. Expression of differentiation markers (E-cadherin, vimentin, CK5, CK18, and CK20) was similar in CAM tumors and 2D cultures. Cellular phenotypes also remained stable after recultivation of CAM tumors in 2D cultures. Bioluminescence images correlated with tumor weight. Cisplatin and HDACi decreased weight and growth of CAM tumors in a dose-dependent manner, but HDACi treatment acted less efficiently as in 2D cultures, especially on its typically associated molecular markers. Synergistic effects of HDACi and subsequent cisplatin treatment on UCCs were neither detected in 2D cultures nor detected in CAM tumors. CONCLUSION: Our results demonstrate that the CAM assay is a useful tool for studying tumor growth and response to conventional anticancer drugs under 3D conditions, especially cytotoxic drugs as cisplatin. With some limitations, it might serve as a cost- and time-effective preclinical screening assay for novel therapeutic approaches before further assessment in expensive and cumbersome animal models.


Asunto(s)
Membrana Corioalantoides/metabolismo , Neoplasias Urológicas/terapia , Animales , Embrión de Pollo , Humanos , Transfección , Neoplasias Urológicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA