RESUMEN
Common approaches to antibiotic discovery include small-molecule screens for growth inhibition in target pathogens and screens for inhibitors of purified enzymes. These approaches have a shared intent of seeking to directly target a vital Achilles heel in a pathogen of interest. Here, we report the first screen against a sporulation pathway in a non-pathogenic bacterium as a means of discovering novel antibiotics-this effort has resulted in two important discoveries. First, we show that the sporulation program of Streptomyces venezuelae is exquisitely sensitive to numerous forms of DNA damage. Second, we have identified a DNA gyrase inhibitor. This molecule, EN-7, is active against pathogenic species that are resistant to ciprofloxacin and other clinically important antibiotics. We suggest that this strategy could be applied to other morphogenetic pathways in prokaryotes or eukaryotes as a means of identifying novel chemical matter having scientific and clinical utility.
Asunto(s)
Girasa de ADN/efectos de los fármacos , Descubrimiento de Drogas/métodos , Inhibidores de Topoisomerasa II/aislamiento & purificación , Antibacterianos/farmacología , Girasa de ADN/metabolismo , Pruebas de Sensibilidad Microbiana , Esporas Bacterianas/efectos de los fármacos , Streptomyces/efectos de los fármacos , Streptomyces/metabolismo , Inhibidores de Topoisomerasa II/metabolismo , Inhibidores de Topoisomerasa II/farmacologíaRESUMEN
INTRODUCTION: Understanding embryogenesis currently relies largely on the control of gene expression via several signaling pathways. Many of the embryonic signaling pathways guiding embryological events are implicated in diseases that lack effective cure or treatment. Because of the large number and size of the eggs, the rapid development of the embryos and the fact they are amenable to pharmacological, surgical and genetic techniques, Xenopus laevis has been successfully used in searching for compounds that target embryonic signaling pathways. Areas covered: Here, the authors address the use of amphibian eggs/embryos in successful chemical screenings; egg extracts as well as embryo phenotypes have been assayed to reveal drug toxicology effects and novel compounds acting in the Wnt/ß-catenin signaling pathway. They do not discuss the use of Xenopus oocyte two-electrode voltage clamps or genome editing tools as approaches for drug discovery because they have been discussed elsewhere. Expert opinion: While high-throughput screening is commonly performed in egg extracts, the embryo axes perturbation system is more suited to the refinement and/or the validation of drug discovery targeting embryonic signaling (particularly the Wnt/ß-catenin pathway). In addition, Xenopus has also been used in FETAX (frog embryo teratogenesis assay: Xenopus) to address chemical toxic/teratogenic effects. However, further studies are necessary.
Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas/métodos , Transducción de Señal/efectos de los fármacos , Animales , Evaluación Preclínica de Medicamentos/métodos , Regulación del Desarrollo de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Oocitos , Técnicas de Placa-Clamp , Pruebas de Toxicidad/métodos , Vía de Señalización Wnt/efectos de los fármacos , Xenopus laevisRESUMEN
Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies, and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here, we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-ß), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-ß, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration.
Asunto(s)
Ambystoma mexicanum/genética , Regeneración/genética , Transducción de Señal/genética , Animales , Análisis por Micromatrices/métodos , Transcripción Genética/genética , Vertebrados/genéticaRESUMEN
In this work, chemical and biological activities of crude extracts obtained with 50 percent ethanol, 70 percent ethanol, acetone:water (7:3; v/v) and chloroform of Plinia cauliflora (DC.) Kausel, Myrtaceae, leaves, a native tree from several regions of Brazil, was investigated. Histochemical and phytochemical screenings were done according to characterization reactions and thin layer chromatography. To assist in extracts standardization, total phenol and flavonoids content spectrophotometric was performed. Antioxidant activity was analyzed by percentage of radical scavenging using DPPH solution. Antimicrobial activity was evaluated against Gram-positive, Gram-negative pathogenic bacteria and species of Candida using agar diffusion and minimal inhibitory concentration (MIC) determination methods according to standard methods. The leaves presented lipids at secretory cavity and phenols, mainly tannins, in nervures and palisade parenchyma. Polar extracts showed flavonoids, tannins and high content of phenols and flavonoids. The extracts showed great antioxidant activity and antimicrobial activity was better against Candida species than against bacteria.
No presente trabalho, foram investigadas a composição química e atividades biológicas de extratos brutos obtidos com etanol 50 por cento, etanol 70 por cento, acetona:água (7:3; v/v) e clorofórmio das folhas de Plinia cauliflora (DC.) Kausel, Myrtaceae, uma árvore nativa de várias regiões do Brasil. Os rastreamentos histoquímico e fitoquímico foram feitos de acordo com reações de caracterização e cromatografia em camada delgada. Para auxiliar na padronização dos extratos foram realizadas determinações do teor de fenóis totais e de flavonoides totais, espectrofotometricamente. A atividade antioxidante foi analisada pela porcentagem de sequestro de radicais livres usando solução de DPPH. A atividade antimicrobiana foi avaliada frente a bactérias patogênicas Gram-positivas, Gram-negativas e espécies de Candida utilizando os métodos de difusão em ágar e determinação da concentração inibitória mínima (MIC) de acordo com métodos padronizados. As folhas apresentaram lipídeos nas cavidades secretoras e fenóis, principalmente taninos, nas nervuras e parênquima paliçádico. Os extratos polares apresentaram flavonoides, taninos, alto teor de fenóis totais e de flavonoides totais. Os extratos mostraram elevada atividade antioxidante e a atividade antimicrobiana foi melhor contra as espécies de Candida do que contra as bactérias.