Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39203605

RESUMEN

A series of characterization methods involving high-resolution X-ray diffraction (HR-XRD), electron channel contrast imaging (ECCI), cathodoluminescence microscopy (CL), and atomic force microscopy (AFM) were applied to calculate the dislocation density of GaN-on-Si epitaxial wafers, and their performance was analyzed and evaluated. The ECCI technique, owing to its high lateral resolution, reveals dislocation distributions on material surfaces, which can visually characterize the dislocation density. While the CL technique is effective for low-density dislocations, it is difficult to accurately identify the number of dislocation clusters in CL images as the density increases. The AFM technique analyzes surface dislocation characteristics by detecting surface pits caused by dislocations, which are easily affected by sample and probe conditions. A prevalent method for assessing the crystal quality of GaN is the rocking curve of HR-XRD (ω-scan), which calculates the dislocation density based on the FWHM value of the curves. By comparing the above four dislocation characterization methods, the advantages and limitations of each method are clarified, which also verifies the applicability of DB=ß29b2 for GaN-on-Si epitaxial wafers. This provides an important reference value for dislocation characterization in GaN-on-Si materials. The accuracy evaluation of dislocation density can truly and reliably reflect crystal quality, which is conducive to further optimization. Furthermore, this study can also be applied to other heterogeneous or homogeneous epitaxial materials.

2.
Materials (Basel) ; 17(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591476

RESUMEN

Pyroelectric materials are naturally electrically polarized and exhibits a built-in spontaneous polarization in their unit cell structure even in the absence of any externally applied electric field. These materials are regarded as one of the ideal detector elements for infrared applications because they have a fast response time and uniform sensitivity at room temperature across all wavelengths. Crystals of the perovskite lead titanate (PbTiO3) family show pyroelectric characteristics and undergo structural phase transitions. They have a high Curie temperature (the temperature at which the material changes from the ferroelectric (polar) to the paraelectric (nonpolar) phase), high pyroelectric coefficient, high spontaneous polarization, low dielectric constant, and constitute important component materials not only useful for infrared detection, but also with vast applications in electronic, optic, and MEMS devices. However, the preparation of large perfect and pure single crystals PbTiO3 is challenging. Additionally, difficulties arise in the application of such bulk crystals in terms of connection to processing circuits, large size, and high voltages required for their operation. In this part of the review paper, we explain the electrical behavior and characterization techniques commonly utilized to unravel the pyroelectric properties of lead titanate and its derivatives. Further, it explains how the material preparation techniques affect the electrical characteristics of resulting thin films. It also provides an in-depth discussion of the measurement of pyroelectric coefficients using different techniques.

3.
Pharm Res ; 41(4): 779-793, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519813

RESUMEN

PURPOSE OR OBJECTIVE: Surfactants, including polysorbates and poloxamers, play a crucial role in the formulation of therapeutic proteins by acting as solubilizing and stabilizing agents. They help prevent protein aggregation and adsorption, thereby enhancing the stability of drug substance and products., However, it is important to note that utilizing high concentrations of surfactants in protein formulations can present significant analytical challenges, which can ultimately affect the product characterization. METHODS: In our study, we specifically investigated the impact of elevated surfactant concentrations on the characterization of monoclonal antibodies. We employed various analytical techniques including size-exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), a cell based functional assay, and biophysical characterization. RESULTS: The findings of our study indicate that higher levels of Polysorbate 80 (PS-80) have adverse effects on the measured purity, biological activity, and biophysical characterization of biologic samples. Specifically, the elevated levels of PS-80 cause analytical interferences, which can significantly impact the accuracy and reliability of analytical studies. CONCLUSIONS: Our study results highlight a significant risk in analytical investigations, especially in studies involving the isolation and characterization of impurities. It is important to be cautious of surfactant concentrations, as they can become more concentrated during common sample manipulations like buffer exchange. Indeed, the research presented in this work emphasizes the necessity to evaluate the impact on analytical assays when there are substantial alternations in the matrix composition. By doing so, valuable insights can be gained regarding potential challenges associated with assay development and characterization of biologics with complex formulations.


Asunto(s)
Anticuerpos Monoclonales , Tensoactivos , Tensoactivos/química , Anticuerpos Monoclonales/química , Cromatografía Líquida de Alta Presión , Reproducibilidad de los Resultados , Polisorbatos/química , Lipoproteínas
4.
ACS Nano ; 18(9): 6887-6895, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386278

RESUMEN

Atomic defects in two-dimensional (2D) materials impact electronic and optoelectronic properties, such as doping and single photon emission. An understanding of defect-property relationships is essential for optimizing material performance. However, progress in understanding these critical relationships is hindered by a lack of straightforward approaches for accurate, precise, and reliable defect quantification on the nanoscale, especially for insulating materials. Here, we demonstrate that lateral force microscopy (LFM), a mechanical technique, can observe atomic defects in semiconducting and insulating 2D materials under ambient conditions. We first improve the sensitivity of LFM through consideration of cantilever mechanics. With the improved sensitivity, we use LFM to locate atomic-scale point defects on the surface of bulk MoSe2. By directly comparing LFM and conductive atomic force microscopy (CAFM) measurements on bulk MoSe2, we demonstrate that point defects observed with LFM are atomic defects in the crystal. As a mechanical technique, LFM does not require a conductive pathway, which allows defect characterization on insulating materials, such as hexagonal boron nitride (hBN). We demonstrate the ability to observe intrinsic defects in hBN and defects introduced by annealing. Our demonstration of LFM as a mechanical defect characterization technique applicable to both conductive and insulating 2D materials will enable routine defect-property determination and accelerate materials research.

5.
ChemSusChem ; 17(3): e202301268, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37845180

RESUMEN

Solid-state batteries (SSBs) are considered to be one of the most promising candidates for next-generation energy storage systems due to the high safety, high energy density and wide operating temperature range of solid-state electrolytes (SSEs) they use. Unfortunately, the practical application of SSEs has rarely been successful, which is largely attributed to the low chemical stability and ionic conductivity, ineluctable solid-solid interface issues including limited ion transport channels, high energy barriers, and poor interface contact. A comprehensive understanding of ion transport mechanisms of various SSEs, interactions between fillers and polymer matrixes and the role of the interface in SSBs are indispensable for rational design and performance optimization of novel electrolytes. The categories, research advances and ion transport mechanism of inorganic glass/ceramic electrolytes, polymer-based electrolytes and corresponding composite electrolytes are detailly summarized and discussed. Moreover, interface contact and compatibility between electrolyte and cathode/anode are also briefly discussed. Furthermore, the electrochemical characterization methods of SSEs used in different types of SSBs are also introduced. On this basis, the principles and prospects of novel SSEs and interface design are curtly proposed according to the development requirements of SSBs. Moreover, the advanced characterizations for real-time monitoring of interface changes are also brought forward to promote the development of SSBs.

6.
Molecules ; 28(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38067653

RESUMEN

[Eu(3DPIQC)3] (where DPIQC = 3-(diphenyl phosphoryl)-1-isoquinolinecarboxylate), a luminescent europium complex with antenna ligands, has been carefully embedded within a polyvinyl butyral (PVB) matrix and the resulting material was used to prepare films used as luminescent down-shifting layers (LDSLs) for crystalline Si-based solar cells. The films were characterized using photoluminescence spectroscopy, atomic force spectroscopy (AFM), UV-Vis spectroscopy, and fluorescence microscopy. The AFM analysis shows films with low surface roughness, while fluorescence microscopy revealed that the Eu complex embedded in PVB assumed a spheroidal configuration, a morphology especially beneficial for optical applications. The so-obtained LDSLs were utilized as energy converters in c-Si solar cells to enhance the utilization of high-energy photons, thereby improving their overall efficiency. The determination of photovoltaic parameters carried out before and after the deposition of the LDSLs on the c-Si cells confirms a positive effect on the efficiency of the cell. The Jsc increases from 121.6 mA/cm2 to 124.9 mA/cm2, and the open circuit voltage (Voc) is found to be unrelated to the complex concentration in the films. The fill factor (FF) remains constant with the Eu concentration. The EQE curves indicate an enhancement in the performance of the photovoltaic cells within the UV region of the spectrum for all coated devices. Electrochemical impedance spectroscopy (EIS) was also carried out in order to analyze the effect of the Eu complex in the charge transfer process of the devices.

7.
Micromachines (Basel) ; 14(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38004901

RESUMEN

Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) have been considered promising candidates for power devices due to their superior advantages of high current density, high breakdown voltage, high power density, and high-frequency operations. However, the development of GaN HEMTs has been constrained by stability and reliability issues related to traps. In this article, the locations and energy levels of traps in GaN HEMTs are summarized. Moreover, the characterization techniques for bulk traps and interface traps, whose characteristics and scopes are included as well, are reviewed and highlighted. Finally, the challenges in trap characterization techniques for GaN-based HEMTs are discussed to provide insights into the reliability assessment of GaN-based HEMTs.

8.
Gels ; 9(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37504410

RESUMEN

Wound healing is a biological process that involves a series of consecutive process, and its impairment can lead to chronic wounds and various complications. Recently, there has been a growing interest in employing nanotechnology to enhance wound healing. Silver nanoparticles (AgNPs) have expanded significant attention due to their wide range of applications in the medical field. The advantages of AgNPs include their easy synthesis, change their shape, and high surface area. Silver nanoparticles are very efficient for topical drug administration and wound healing because of their high ratio of surface area to volume. The efficiency of AgNPs depends on the synthesis method and the intended application. Green synthesis methods offer an eco-friendly approach by utilizing natural sources such as plant extracts and fungus. The characterization of nanoparticles plays an important character, and it is accomplished through the use of several characterization methods such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). These techniques are employed to confirm the specific characters of the prepared Silver Nanoparticles. Additionally, the review addresses the challenges and future perspectives of utilizing green-synthesized AgNPs loaded in Polyacrylamide hydrogel for wound healing applications, including the optimization of nanoparticle size, and release kinetics. Overall, this review highlights the potential of green-synthesized AgNPs loaded in Polyacrylamide hydrogel as promising for advanced wound healing therapies. There are different approaches of usage of AgNPs for wound healing such as polyacrylamide -hydrogels, and the mechanism after their antibacterial action, have been exposed.

9.
Adv Mater ; 35(46): e2304379, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37487190

RESUMEN

Direct electrochemical reduction of CO2 (CO2 RR) into value-added chemicals is a promising solution to reduce carbon emissions. The activity of CO2 RR is influenced deeply by the reaction microenvironment and electronic properties of the catalysts. Herein, the surface PO4 3- anions are tuned to modulate the local microenvironment and the electronic properties of the indium-based catalyst with abundant metal-oxygen species enabling efficient electrochemical conversion of CO2 to HCOO- . Indium nanoparticles coupled with PO4 3- anions (PO4 3- -In NPs) achieve a high selectivity of HCOO- up to 91.4% at a low potential of -0.98 V versus reversible hydrogen electrode (versus RHE) and a high HCOO- partial current density of 279.3 mA cm-2 at -1.1 V versus RHE in the electrochemical flow cell. In situ and ex situ characterizations confirm the PO4 3- anions keep stable on the surface of indium during CO2 RR, accelerating the generation of OCHO* intermediate. From density functional theory calculations, PO4 3- anions enrich the metal-oxygen species on the substrate to optimize the electronic structure of the catalysts and induce a local microenvironment with massive K+ ions on the interface, thus reducing the activation energy barrier of CO2 RR.

10.
Adv Sci (Weinh) ; 10(26): e2303211, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37424052

RESUMEN

Aqueous zinc ion batteries have gained research attention as a safer, economical and more environmentally friendly alternative to lithium-ion batteries. Similar to lithium batteries, intercalation processes play an important role in the charge storage behaviour of aqueous zinc ion batteries, with the pre-intercalation of guest species in the cathode being also employed as a strategy to improve battery performance. In view of this, proving hypothesized mechanisms of intercalation, as well as rigorously characterizing intercalation processes in aqueous zinc ion batteries is crucial to achieve advances in battery performance. This review aims to evaluate the range of techniques commonly used to characterize intercalation in aqueous zinc ion battery cathodes, providing a perspective on the approaches that can be utilized to rigorously understand such intercalation processes.

11.
Materials (Basel) ; 16(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37297308

RESUMEN

Polypeptoids are a family of synthetic peptidomimetic polymers featuring N-substituted polyglycine backbones with large chemical and structural diversity. Their synthetic accessibility, tunable property/functionality, and biological relevance make polypeptoids a promising platform for molecular biomimicry and various biotechnological applications. To gain insight into the relationship between the chemical structure, self-assembly behavior, and physicochemical properties of polypeptoids, many efforts have been made using thermal analysis, microscopy, scattering, and spectroscopic techniques. In this review, we summarize recent experimental investigations that have focused on the hierarchical self-assembly and phase behavior of polypeptoids in bulk, thin film, and solution states, highlighting the use of advanced characterization tools such as in situ microscopy and scattering techniques. These methods enable researchers to unravel multiscale structural features and assembly processes of polypeptoids over a wide range of length and time scales, thereby providing new insights into the structure-property relationship of these protein-mimetic materials.

12.
Polymers (Basel) ; 15(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37299281

RESUMEN

The prospective applications of chitosan-based hydrogels (CBHs), a category of biocompatible and biodegradable materials, in biomedical disciplines such as tissue engineering, wound healing, drug delivery, and biosensing have garnered great interest. The synthesis and characterization processes used to create CBHs play a significant role in determining their characteristics and effectiveness. The qualities of CBHs might be greatly influenced by tailoring the manufacturing method to get certain traits, including porosity, swelling, mechanical strength, and bioactivity. Additionally, characterization methods aid in gaining access to the microstructures and properties of CBHs. Herein, this review provides a comprehensive assessment of the state-of-the-art with a focus on the affiliation between particular properties and domains in biomedicine. Moreover, this review highlights the beneficial properties and wide application of stimuli-responsive CBHs. The main obstacles and prospects for the future of CBH development for biomedical applications are also covered in this review.

13.
Small ; 19(32): e2302208, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37154228

RESUMEN

Layered Cobalt (Co)-free Nickel (Ni)-rich cathode materials have attracted much attention due to their high energy density and low cost. Still, their further development is hampered by material instability caused by the chemical/mechanical degradation of the material. Although there are numerous doping and modification approaches to improve the stability of layered cathode materials, these approaches are still in the laboratory stage and require further research before commercial application. To fully exploit the potential of layered cathode materials, a more comprehensive theoretical understanding of the underlying issues is necessary, along with active exploration of previously unrevealed mechanisms. This paper presents the phase transition mechanism of Co-free Ni-rich cathode materials, the existing problems, and the state-of-the-art characterization tools employed to study the phase transition. The causes of crystal structure degradation, interfacial instability, and mechanical degradation are elaborated, from the material's crystal structure to its phase transition and atomic orbital splitting. By organizing and summarizing these mechanisms, this paper aims to establish connections among common research problems and to identify future research priorities, thereby facilitating the rapid development of Co-free Ni-rich materials.

14.
Curr Med Chem ; 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927424

RESUMEN

BACKGROUND: Natural polymers are organic compounds produced by living organisms. In nature, they exist in three main forms, including proteins, polysaccharides and nucleic acids. In recent years, with the continuous research on drug and gene delivery systems, scholars have found that natural polymers have promising applications in drug and gene delivery systems due to their excellent properties such as biocompatibility, biodegradability, low immunogenicity and easy modification. However, since the structure, physicochemical properties, pharmacological properties and biological characteristics of biopolymer molecules have not yet been entirely understood, further studies are required before large-scale clinical application. METHODS: This review focuses on recent advances in the representative natural polymers such as proteins (albumin, collagen, elastin), polysaccharides (chitosan, alginate, cellulose) and nucleic acids. RESULTS: We introduce the characteristics of various types of natural polymers, and further outline the characterization methods and delivery forms of these natural polymers. CONCLUSION: Finally, we discuss possible challenges for natural polymers in subsequent experimental studies and clinical applications. It provides an important strategy for the clinical application of natural polymers in drug and gene delivery systems.

15.
mLife ; 2(4): 450-461, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38818273

RESUMEN

Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy-based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large-scale samples for library screening of genetic elements. However, strategies for high-throughput microscopy experiments remain limited. Here, we present a high-throughput, microscopy-based platform that can simultaneously complete the preparation of an 8 × 12-well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single-cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs.

16.
Materials (Basel) ; 15(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499994

RESUMEN

The microstructure and performance of magnesium potassium phosphate cement (MKPC), a kind of magnesium phosphate cement (MPC), are determined by the hydration products. In this paper, the hydration behavior of MKPC is investigated through various material characterization methods and thermodynamic modeling, including X-ray diffraction (XRD), thermogravimetric and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and GEMS software. The results of XRD, TG/DSC and SEM all indicate that K-struvite (MgKPO4·6H2O) is the main hydration product of MKPC. When the curing age is 1 day and 28 days, the TG data indicate that the mass loss of MKPC in the range of 60-200 °C is 17.76% and 17.82%, respectively. The MIP results show that the porosity of MKPC is 29.63% and 29.61% at the curing age of 1 day and 28 days, respectively, which indicates that the structure of MKPC becomes denser with the increase in curing age. In addition, the cumulative pore volume of MKPC at the curing age of 28 days is 2.8% lower than that at 1 day, and the pore diameters are shifted toward the small pores. Furthermore, the thermodynamic modeling is well suited to make an analysis of the hydration behavior of MKPC.

17.
Environ Sci Pollut Res Int ; 29(59): 88488-88506, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36334205

RESUMEN

Adsorption is a promising technology for removing several contaminants from aqueous matrices. In the last years, researchers worldwide have been working on developing composite adsorbents to overcome some limitations and drawbacks of conventional adsorbent materials, which depend on various factors, including the characteristics of the adsorbents. Therefore, it is essential to characterize the composite adsorbents to describe their properties and structure and elucidate the mechanisms, behavior, and phenomenons during the adsorption process. In this sense, this work aimed to review the main methods used for composite adsorbent characterization, providing valuable information on the importance of these techniques in developing new adsorbents. In this paper, we reviewed the following methods: X-Ray diffraction (XRD); spectroscopy; scanning electron microscopy (SEM); N2 adsorption/desorption isotherms (BET and BJH methods); thermogravimetry (TGA); point of zero charge (pHPZC); elemental analysis; proximate analysis; swelling and water retention capacities; desorption and reuse.


Asunto(s)
Tecnología , Adsorción , Microscopía Electrónica de Rastreo , Termogravimetría
18.
Materials (Basel) ; 15(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36295233

RESUMEN

Biochar has been used in various applications, e.g., as a soil conditioner and in remediation of contaminated water, wastewater, and gaseous emissions. In the latter application, biochar was shown to be a suitable alternative to activated carbon, providing high treatment efficiency. Since biochar is a by-product of waste pyrolysis, its use allows for compliance with circular economics. Thus, this research aims to obtain a detailed characterization of three carbonaceous materials: an activated carbon (CARBOSORB NC 1240®) and two biochars (RE-CHAR® and AMBIOTON®). In particular, the objective of this work is to compare the properties of three carbonaceous materials to evaluate whether the application of the two biochars is the same as that of activated carbon. The characterization included, among others, particle size distribution, elemental analysis, pH, scanning electron microscope, pore volume, specific surface area, and ionic exchange capacity. The results showed that CARBOSORB NC 1240® presented a higher specific surface (1126.64 m2/g) than AMBIOTON® (256.23 m2/g) and RE-CHAR® (280.25 m2/g). Both biochar and activated carbon belong to the category of mesoporous media, showing a pore size between 2 and 50 nm (20-500 Å). Moreover, the chemical composition analysis shows similar C, H, and N composition in the three carbonaceous materials while a higher O composition in RE-CHAR® (9.9%) than in CARBOSORB NC 1240 ® (2.67%) and AMBIOTON® (1.10%). Differences in physical and chemical properties are determined by the feedstock and pyrolysis or gasification temperature. The results obtained allowed to compare the selected materials among each other and with other carbonaceous adsorbents.

19.
Int J Pharm ; 623: 121862, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35671851

RESUMEN

Wet media milling is a popular technology used to prepare nanosuspensions. However, the theories and methods to guide the research on the formulation and process affecting wet media milling remain limited. The research on wet media milling follows a "black box" approach to a certain extent. This review focuses on exploring the formulation and process parameters factors in wet media milling. The formulation factors include the concentration, hydrophilicity/hydrophobicity, and structure of the drug and stabilizer, whereas the milling process parameters include the milling speed, milling time, and material, size, and filling volume of milling beads. Contrary to other reviews, this review attempts to quantify and visualize these factors by combining a microhydrodynamic model with emerging characterization methods to provide a scientific basis for the selection of nanosuspension formulations and process parameters, as opposed to the conventional trial-and-error approach.


Asunto(s)
Nanopartículas , Composición de Medicamentos/métodos , Nanopartículas/química , Tamaño de la Partícula , Solubilidad , Suspensiones
20.
Front Chem ; 10: 913035, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711959

RESUMEN

In this work, the difference between the weak measurement method and the weak value amplification process and the classical measurement process is thoroughly discussed, and the transition conditions of the weak value enhancement are obtained. A transition mode of the weak measurement and the classical measurement is proposed for the first time, and a better fitting model of the measurement results is found by performing a systematic analysis. On top of that, the importance of the new fitting method for the application of the weak measurement system is verified during the industrial production of organic molecular -nucleic acid, protein, polysaccharide-hydrolysis or synthesis. At the same time, a variety of spectral characterization methods are proposed and the advantages and disadvantages of the different characterization methods are analyzed through carrying out experiments. Consequently, the wide implementation of weak measurement-based detection technology is attained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA