RESUMEN
This paper aims to provide a metaheuristic approach to drone array optimization applied to coverage area maximization of wireless communication systems, with unmanned aerial vehicle (UAV) base stations, in the context of suburban, lightly to densely wooded environments present in cities of the Amazon region. For this purpose, a low-power wireless area network (LPWAN) was analyzed and applied. LPWAN are systems designed to work with low data rates but keep, or even enhance, the extensive area coverage provided by high-powered networks. The type of LPWAN chosen is LoRa, which operates at an unlicensed spectrum of 915 MHz and requires users to connect to gateways in order to relay information to a central server; in this case, each drone in the array has a LoRa module installed to serve as a non-fixated gateway. In order to classify and optimize the best positioning for the UAVs in the array, three concomitant bioinspired computing (BIC) methods were chosen: cuckoo search (CS), flower pollination algorithm (FPA), and genetic algorithm (GA). Positioning optimization results are then simulated and presented via MATLAB for a high-range IoT-LoRa network. An empirically adjusted propagation model with measurements carried out on a university campus was developed to obtain a propagation model in forested environments for LoRa spreading factors (SF) of 8, 9, 10, and 11. Finally, a comparison was drawn between drone positioning simulation results for a theoretical propagation model for UAVs and the model found by the measurements.
Asunto(s)
Algoritmos , Dispositivos Aéreos No Tripulados , Humanos , Ciudades , Simulación por Computador , FloresRESUMEN
Underground Mining (UM) is a hostile industry that generally requires a wireless communication system as a cross-cutting axis for its optimal operation. Therefore, in the last five years, it has been shown that, in addition to radio-frequency-based communication links, wireless optical communications, such as Visible Light Communication (VLC), can be applied to UM environments. The application of VLC systems in underground mines, known as UM-VLC, must take into account the unique physical features of underground mines. Among the physical phenomena found in underground mines, the most important ones are the positioning of optical transmitters and receivers, irregular walls, shadowing, and a typical phenomenon found in tunnels known as scattering, which is caused by the atmosphere and dust particles. Consequently, it is necessary to use proper dust particle distribution models consistent with these scenarios to describe the scattering phenomenon in a coherent way in order to design realistic UM-VLC systems with better performance. Therefore, in this article, we present an in-depth study of the interaction of optical links with dust particles suspended in the UM environment and the atmosphere. In addition, we analytically derived a hemispherical 3D dust particle distribution model, along with its main statistical parameters. This analysis allows to develop a more realistic scattering channel component and presents an enhanced UM-VLC channel model. The performance of the proposed UM-VLC system is evaluated using computational numerical simulations following the IEEE 802.1.5.7 standard in terms of Channel Impulse Response (CIR), received power, Signal-to-Noise-Ratio (SNR), Root Mean Square (RMS) delay spread, and Bit Error Rate (BER). The results demonstrate that the hemispherical dust particle distribution model is more accurate and realistic in terms of the metrics evaluated compared to other models found in the literature. Furthermore, the performance of the UM-VLC system is negatively affected when the number of dust particles suspended in the environment increases.
RESUMEN
In this work, the channel characterization in terms of large-scale propagation, small-scale propagation, statistical and interference analysis of Fifth-Generation (5G) Millimeter Wave (mmWave) bands for wireless networks for 28, 30 and 60 GHz is presented in both an outdoor urban complex scenario and an indoor scenario, in order to consider a multi-functional, large node-density 5G network operation. An in-house deterministic Three-Dimensional Ray-Launching (3D-RL) code has been used for that purpose, considering all the material properties of the obstacles within the scenario at the frequency under analysis, with the aid of purpose-specific implemented mmWave simulation modules. Different beamforming radiation patterns of the transmitter antenna have been considered, emulating a 5G system operation. Spatial interference analysis as well as time domain characteristics have been retrieved as a function of node location and configuration.