Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 164: 105351, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36375689

RESUMEN

Five hydroxamate siderophores, chaetomadramines A-E (1-5), along with seven known compounds were isolated from the fermented rice culture of the fungus Chaetomium madrasense cib-1. Compounds 1-5 were structurally elucidated on the basis of spectroscopic data, which were a group of unusual hydroxamate siderophores, bearing a long fatty acyl on the α-NH2 of the Nδ-hydroxylated ornithine. Compounds 2-5 were new. The structural elucidation and spectroscopic data of 1 were reported for the first time. Compounds 2-4 significantly improved the survival rates of PC12 cells in the neuroprotective activity assay at the concentration of 40 µM.


Asunto(s)
Chaetomium , Sideróforos , Sideróforos/química , Estructura Molecular , Chaetomium/química , Ácidos Hidroxámicos
2.
Front Microbiol ; 14: 1292870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38352062

RESUMEN

The chemical engineering of natural extracts has emerged as an effective strategy for the production of diverse libraries of chemicals, making it integral to drug discovery. A chemical engineering strategy based on the epoxidation and ring-opening reactions was used to prepare diversity-enhanced extracts of Chaetomium madrasense 375. Eleven unnatural cytochalasan derivatives (1-11) with unique functional groups, such as amine and isoxazole, were isolated and characterized from these chemically engineered extracts of C. madrasense 375. The identification of these new structures was accomplished through comprehensive spectroscopic analysis, supplemented by synthetic considerations. Notably, compounds 5 and 13-16 displayed potent phytotoxic effects on Arabidopsis thaliana, while compounds 1, 2, 5, 10, and 12 demonstrated inhibitory activities on LPS-induced NO production in RAW264.7 cells. Among them, compound 1 was found to be able to inhibit the upregulated expression of the inducible nitric oxide synthase (iNOS) protein induced by LPS, while also decreasing the production of pro-inflammatory cytokines (IL-6) and influencing the phosphorylation of p38, ERK1/2, and JNK at 100 µM. Our findings demonstrate that the chemical engineering of natural product extracts can be an efficient technique for the generation of novel bioactive molecules.

3.
Front Chem ; 9: 620589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968893

RESUMEN

"Diversity-enhanced extracts" is an effective method of producing chemical libraries for the purpose of drug discovery. Three rare new cytochalasan derivative chaetoglobosins B1-B3 (1-3) were obtained from chemically engineered crude broth extracts of Chaetomium madrasense 375 prepared by reacting with hydrazine monohydrate and four known metabolite chaetoglobosins (4-7) were also identified from the fungus. The structures were identified by NMR and MS analysis and electronic circular dichroism simulation. In addition, the antiproliferative activities of these compounds were also evaluated, and the drug-resistant activities of cytochalasans were evaluated for the first time. Compound 6 possessed potent activity against four human cancer cells (A549, HCC827, SW620, and MDA-MB-231), and two drug-resistant HCC827 cells (Gefitinib-resistant, Osimertinib-resistant) compared with the positive controls.

4.
Molecules ; 24(18)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31492021

RESUMEN

Two new cytochalasans, Chaetomadrasins A (1) and B (2), along with six known analogues (3-8), were isolated from the solid-state fermented culture of desert soil-derived Chaetomium madrasense 375. Their structures were clarified by comprehensive spectroscopic analyses, and the absolute configurations of Compounds 1 and 2 were confirmed by electronic circular dichroism (ECD) and calculated ECD. For the first time, Chaetomadrasins A (1), which belongs to the chaetoglobosin family, is characterized by the presence of all oxygen atoms in the form of Carbonyl. Chaetomadrasin B (2) represents the first example of chaetoglobosin type cytochalasan characterized by a hydroxy unit and carbonyl group fused to the indole ring. Compounds 1 and 2 displayed moderate cytotoxicity against HepG2 human hepatocellular carcinoma cells.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Chaetomium/química , Citocalasinas/farmacología , Microbiología del Suelo , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular , Citocalasinas/química , Citocalasinas/aislamiento & purificación , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA