Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Food Microbiol ; 357: 109383, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34509931

RESUMEN

In food industries UV-C irradiation is used to achieve decontamination of some packaging devices, such as plastic caps or laminated foils, and of those smooth surfaces that can be directly irradiated. Since its effectiveness can be checked by microbial validation tests, some ascospore-forming molds (Aspergillus hiratsukae, Talaromyces bacillisporus, Aspergillus montevidensis, and Chaetomium globosum) were compared with one of the target microorganisms actually used in industrial bio-validations (Aspergillus brasiliensis ATCC 16404) to find the species most resistant to UV-C. Tests were carried out with an UV-C lamp (irradiance = 127 µW/cm2; emission peak = 253.7 nm) by inoculating HDPE caps with one or more layers of spores. Inactivation kinetics of each strain were studied and both the corresponding 1D-values and the number of Logarithmic Count Reductions (LCR) achieved were calculated. Our results showed the important role played by the type of inoculum (one or more layers) and by the differences in cell structure (thickness, presence of protective solutes, pigmentation, etc.) of the strains tested. With a single-layer inoculum, Chaetomium globosum showed the highest resistance to UV-C irradiation (1D-value = 100 s). With a multi-layer inoculum, Aspergillus brasiliensis ATCC 16404 was the most resistant fungus (1D-value = 188 s), even if it reached a number of logarithmic reductions that was higher than those of some ascospore-forming mycetes (Aspergillus montevidensis, Talaromyces bacillisporus) tested.


Asunto(s)
Embalaje de Alimentos , Talaromyces , Aspergillus , Chaetomium , Esterilización
2.
Braz. J. Microbiol. ; 48(3): 410-418, jul.-set. 2017. graf, tab
Artículo en Inglés | VETINDEX | ID: vti-728605

RESUMEN

Chaetoglobosin A is an antibacterial compound produced by Chaetomium globosum, with potential application as a biopesticide and cancer treatment drug. The aim of this study was to evaluate the feasibility of utilizing cornstalks to produce chaetoglobosin A by C. globosum W7 in solid-batch fermentation and to determine an optimal method for purification of the products. The output of chaetoglobosin A from the cornstalks was 0.34 mg/g, and its content in the crude extract was 4.80%. Purification conditions were optimized to increase the content of chaetoglobosin A in the crude extract, including the extract solvent, temperature, and pH value. The optimum process conditions were found to be acetone as the extractant, under room temperature, and at a pH value of 13. Under these conditions, a production process of the antifungal chaetoglobosin A was established, and the content reached 19.17%. Through further verification, cornstalks could replace crops for the production of chaetoglobosin A using this new production process. Moreover, the purified products showed great inhibition against Rhizoctonia solani, with chaetoglobosin A confirmed as the main effective constituent (IC50 = 3.88 µg/mL). Collectively, these results demonstrate the feasibility of using cornstalks to synthesize chaetoglobosin A and that the production process established in this study was effective.(AU)


Asunto(s)
Chaetomium , Zea mays , Antifúngicos/análisis , Uso de Residuos Sólidos , Antibacterianos
3.
Braz. j. microbiol ; Braz. j. microbiol;48(3): 410-418, July-Sept. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-889127

RESUMEN

Abstract Chaetoglobosin A is an antibacterial compound produced by Chaetomium globosum, with potential application as a biopesticide and cancer treatment drug. The aim of this study was to evaluate the feasibility of utilizing cornstalks to produce chaetoglobosin A by C. globosum W7 in solid-batch fermentation and to determine an optimal method for purification of the products. The output of chaetoglobosin A from the cornstalks was 0.34 mg/g, and its content in the crude extract was 4.80%. Purification conditions were optimized to increase the content of chaetoglobosin A in the crude extract, including the extract solvent, temperature, and pH value. The optimum process conditions were found to be acetone as the extractant, under room temperature, and at a pH value of 13. Under these conditions, a production process of the antifungal chaetoglobosin A was established, and the content reached 19.17%. Through further verification, cornstalks could replace crops for the production of chaetoglobosin A using this new production process. Moreover, the purified products showed great inhibition against Rhizoctonia solani, with chaetoglobosin A confirmed as the main effective constituent (IC50 = 3.88 µg/mL). Collectively, these results demonstrate the feasibility of using cornstalks to synthesize chaetoglobosin A and that the production process established in this study was effective.


Asunto(s)
Microbiología Industrial/métodos , Callosidades/microbiología , Chaetomium/metabolismo , Alcaloides Indólicos/metabolismo , Antifúngicos/metabolismo , Residuos/análisis , Microbiología Industrial/instrumentación , Callosidades/metabolismo , Estructura Molecular , Tallos de la Planta/metabolismo , Tallos de la Planta/microbiología , Alcaloides Indólicos/aislamiento & purificación , Alcaloides Indólicos/química , Antifúngicos/aislamiento & purificación , Antifúngicos/química
4.
Braz J Microbiol ; 48(3): 410-418, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28223029

RESUMEN

Chaetoglobosin A is an antibacterial compound produced by Chaetomium globosum, with potential application as a biopesticide and cancer treatment drug. The aim of this study was to evaluate the feasibility of utilizing cornstalks to produce chaetoglobosin A by C. globosum W7 in solid-batch fermentation and to determine an optimal method for purification of the products. The output of chaetoglobosin A from the cornstalks was 0.34mg/g, and its content in the crude extract was 4.80%. Purification conditions were optimized to increase the content of chaetoglobosin A in the crude extract, including the extract solvent, temperature, and pH value. The optimum process conditions were found to be acetone as the extractant, under room temperature, and at a pH value of 13. Under these conditions, a production process of the antifungal chaetoglobosin A was established, and the content reached 19.17%. Through further verification, cornstalks could replace crops for the production of chaetoglobosin A using this new production process. Moreover, the purified products showed great inhibition against Rhizoctonia solani, with chaetoglobosin A confirmed as the main effective constituent (IC50=3.88µg/mL). Collectively, these results demonstrate the feasibility of using cornstalks to synthesize chaetoglobosin A and that the production process established in this study was effective.


Asunto(s)
Antifúngicos/metabolismo , Callosidades/microbiología , Chaetomium/metabolismo , Alcaloides Indólicos/metabolismo , Microbiología Industrial/métodos , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Callosidades/metabolismo , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Microbiología Industrial/instrumentación , Estructura Molecular , Tallos de la Planta/metabolismo , Tallos de la Planta/microbiología , Residuos/análisis
5.
Top Curr Chem (Cham) ; 375(1): 9, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28044280

RESUMEN

The use of gamma radiation for treating biodeteriorated cultural heritage on paper has been studied at the Comisión Nacional de Energía Atómica-CNEA (Argentina) since 2001. In order to preserve books, publications, and documents that have been attacked by insects or fungi, gamma radiation techniques have been used at CNEA. The activities include basic research as well as their applications in infected documents and papers currently used in libraries and archives. New papers were subjected to accelerated ageing in order to evaluate the effects of gamma radiation on their physical and mechanical properties. Current studies include resistance to radiation in two batches of highly cellulolytic fungi, associated with indoor environment. They are present in papers and adhesives used for conservation purposes at the Laboratory of Preventive Conservation and Restoration of Documents. A joint study has been started in CNEA with the National University of La Plata.

6.
Braz. j. microbiol ; Braz. j. microbiol;47(2): 480-488, Apr.-June 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-780842

RESUMEN

Abstract The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4–8 d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80 °C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata.


Asunto(s)
Chaetomium/aislamiento & purificación , Chaetomium/metabolismo , Houttuynia/microbiología , Endófitos/metabolismo , Antifúngicos/metabolismo , Filogenia , Chaetomium/clasificación , Chaetomium/genética , Endófitos/aislamiento & purificación , Endófitos/clasificación , Endófitos/genética , Hongos/crecimiento & desarrollo , Hongos/efectos de los fármacos , Antifúngicos/farmacología
7.
Braz. J. Microbiol. ; 47(2): 480-488, Abr-Jun. 2016. ilus, tab
Artículo en Inglés | VETINDEX | ID: vti-23440

RESUMEN

The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 48 d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80 °C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata.(AU)


Asunto(s)
Houttuynia/microbiología , Chaetomium/aislamiento & purificación , Antifúngicos/análisis , Acetatos/análisis , Bioensayo
8.
Braz J Microbiol ; 47(2): 480-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26991297

RESUMEN

The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4-8d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80°C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata.


Asunto(s)
Antifúngicos/metabolismo , Chaetomium/aislamiento & purificación , Chaetomium/metabolismo , Endófitos/metabolismo , Houttuynia/microbiología , Antifúngicos/farmacología , Chaetomium/clasificación , Chaetomium/genética , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Filogenia
9.
Genet. mol. biol ; Genet. mol. biol;31(4): 943-946, Sept.-Dec. 2008. tab, ilus
Artículo en Inglés | LILACS | ID: lil-501458

RESUMEN

Chaetomium spp. are common colonizers of soil and cellulose-containing substrates. Seventeen isolates of Chaetomium spp., which included 15 isolates of C. globosum and one each of C. reflexum and C. perlucidum, were genetically characterized with universal rice primers (URP - primers derived from DNA repeat sequences in the rice genome) using polymerase chain reaction (URP-PCR). Out of the 12 URP's used in the study, nine primers were effective in producing polymorphic fingerprint patterns from DNA of Chaetomium spp. Analysis of the entire fingerprint profile using the unweighted pair-group method with arithmetic averages (UPGMA) clearly differentiated C. globosum isolates from C. perlucidum and C. reflexum. One of the primers, URP-2R, produced a uniform DNA band of 1.9 kb in all the isolates of C. globosum but not in C. perlucidum and C. reflexum, which can be used as molecular marker to differentiate C. globosum from other species. Our results indicate that URP's are sensitive and give reproducible results for assaying the genetic variability in Chaetomium spp.


Asunto(s)
Chaetomium/genética , Variación Genética , Cartilla de ADN , Genes Fúngicos , Marcadores Genéticos , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA