Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JHEP Rep ; 3(6): 100346, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34667947

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease worldwide. It is characterised by steatosis, liver inflammation, hepatocellular injury and progressive fibrosis. Several preclinical models (dietary and genetic animal models) of NAFLD have deepened our understanding of its aetiology and pathophysiology. Despite the progress made, there are currently no effective treatments for NAFLD. In this review, we will provide an update on the known molecular pathways involved in the pathophysiology of NAFLD and on ongoing studies of new therapeutic targets.

2.
Regen Ther ; 9: 45-57, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30525075

RESUMEN

INTRODUCTION: We previously reported that transplantation of hepatic cell sheets from human bone marrow-derived mesenchymal stem cells (BM-MSCs) with hexachlorophene, a Wnt/ß-catenin signaling inhibitor, ameliorated acute liver injury. In a further previous report, we identified IC-2, a newly synthesized derivative of the Wnt/ß-catenin signaling inhibitor ICG-001, as a potent inducer of hepatic differentiation of BM-MSCs. METHODS: We manufactured hepatic cell sheets by engineering from human BM-MSCs using the single small molecule IC-2. The therapeutic potential of IC-2-induced hepatic cell sheets was assessed by transplantation of IC-2- and hexachlorophene-treated hepatic cell sheets using a mouse model of acute liver injury. RESULTS: Significant improvement of liver injury was elicited by the IC-2-treated hepatic cell sheets. The expression of complement C3 was enhanced by IC-2, followed by prominent hepatocyte proliferation stimulated through the activation of NF-κB and its downstream molecule STAT-3. Indeed, IC-2 also enhanced the expression of amphiregulin, resulting in the activation of the EGFR pathway and further stimulation of hepatocyte proliferation. As another important therapeutic mechanism, we revealed prominent reduction of oxidative stress mediated through upregulation of the thioredoxin (TRX) system by IC-2-treated hepatic cell sheets. The effects mediated by IC-2-treated sheets were superior compared with those mediated by hexachlorophene-treated sheets. CONCLUSION: The single compound IC-2 induced hepatic cell sheets that possess potent regeneration capacity and ameliorate acute liver injury.

3.
Cell Mol Gastroenterol Hepatol ; 5(3): 367-398, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29552625

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. METHODS: Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. RESULTS: TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. CONCLUSIONS: Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.

4.
Mol Metab ; 6(1): 22-29, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28123934

RESUMEN

OBJECTIVE: Fibroblast-growth factor 21 (FGF21) is thought to be important in metabolic regulation. Recently, low protein diets have been shown to increase circulating FGF21 levels. However, when energy contribution from dietary protein is lowered, other macronutrients, such as carbohydrates, must be increased to meet eucaloric balance. This raises the possibility that intake of a diet rich in carbohydrates may induce an increase in plasma FGF21 levels per se. Here we studied the role of dietary carbohydrates on the levels of circulating FGF21 and concomitant physiologic effects by feeding healthy men a carbohydrate rich diet without reducing protein intake. METHODS: A diet enriched in carbohydrates (80 E% carbohydrate; CHO) and a eucaloric control diet (CON) were provided to nine healthy men for three days. The energy intake during the CHO diet was increased (+75% energy) to ensure similar dietary protein intake in CHO and CON. To control for the effect of caloric surplus, we similarly overfed (+75% energy) the same subjects for three days with a fat-rich diet (78 E% fat; FAT), consisting of primarily unsaturated fatty acids. The three diets were provided in random order. RESULTS: After CHO, plasma FGF21 concentration increased 8-fold compared to CON (329 ± 99 vs. 39 ± 9 pg ml-1, p < 0.05). In contrast, after FAT only a non-significant tendency (p = 0.073) to an increase in plasma FGF21 concentration was found. The increase in FGF21 concentration after CHO correlated closely (r = 0.88, p < 0.01) with increased leg glucose uptake (62%, p < 0.05) and increased hepatic glucose production (17%, p < 0.01), indicating increased glucose turnover. Plasma fatty acid (FA) concentration was decreased by 68% (p < 0.01), supported by reduced subcutaneous adipose tissue HSL Ser660 phosphorylation (p < 0.01) and perilipin 1 protein content (p < 0.01), pointing to a suppression of adipose tissue lipolysis. Concomitantly, a 146% increase in the plasma marker of hepatic de novo lipogenesis C16:1 n-7 FA (p < 0.01) was observed together with 101% increased plasma TG concentration (p < 0.001) in association with CHO intake and increased plasma FGF21 concentration. CONCLUSION: Excess dietary carbohydrate, but not fat, led to markedly increased FGF21 secretion in humans, notably without protein restriction, and affected glucose and lipid homeostais.


Asunto(s)
Carbohidratos de la Dieta/administración & dosificación , Factores de Crecimiento de Fibroblastos/metabolismo , Adulto , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/metabolismo , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/metabolismo , Ingestión de Energía , Metabolismo Energético/fisiología , Factores de Crecimiento de Fibroblastos/sangre , Glucosa/metabolismo , Humanos , Insulina/sangre , Lipogénesis/fisiología , Hígado/metabolismo , Masculino
5.
Br J Nutr ; 116(2): 191-203, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27197843

RESUMEN

A Western diet induces insulin resistance, liver steatosis (non-alcoholic fatty liver disease (NAFLD)) and intestinal dysbiosis, leading to increased gut permeability and bacterial translocation, thus contributing to the progression of NAFLD to non-alcoholic steatohepatitis. In the present study, we sought, in a model of Western diet-induced NAFLD, to determine whether citrulline (Cit), an amino acid that regulates protein and energy metabolism, could decrease Western diet-induced liver injuries, as well as the mechanisms involved. Sprague-Dawley rats were fed a high-fat diet (45 %) and fructose (30 %) in drinking water or a control diet associated with water (group C) for 8 weeks. The high-fat, high-fructose diet (Western diet) was fed either alone (group WD) or with Cit (1 g/kg per d) (group WDC) or an isonitrogenous amount of non-essential amino acids (group WDA). We evaluated nutritional and metabolic status, liver function, intestinal barrier function, gut microbiota and splanchnic inflammatory status. Cit led to a lower level of hepatic TAG restricted to microvesicular lipid droplets and to a lower mRNA expression of CCAAT-enhancer-binding protein homologous protein, a marker of endoplasmic reticulum stress, of pro-inflammatory cytokines Il6 (P<0·05) and Tnfα, and of toll-like receptor 4 (Tlr4) (P<0·05). Cit also improved plasma TAG and insulin levels. In the colon, it decreased inflammation (Tnfα and Tlr4 expressions) and increased claudin-1 protein expression. This was associated with higher levels of Bacteroides/Prevotella compared with rats fed the Western diet alone. Cit improves Western diet-induced liver injuries via decreased lipid deposition, increased insulin sensitivity, lower inflammatory process and preserved antioxidant status. This may be related in part to its protective effects at the gut level.


Asunto(s)
Citrulina/farmacología , Colon/efectos de los fármacos , Dieta Occidental/efectos adversos , Insulina/sangre , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico , Triglicéridos/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Bacteroides/efectos de los fármacos , Bacteroides/crecimiento & desarrollo , Citrulina/uso terapéutico , Claudina-1/metabolismo , Colon/metabolismo , Colon/microbiología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inflamación/metabolismo , Inflamación/prevención & control , Resistencia a la Insulina , Interleucina-6/metabolismo , Gotas Lipídicas , Hígado/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Prevotella/efectos de los fármacos , Prevotella/crecimiento & desarrollo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptor Toll-Like 4/metabolismo , Triglicéridos/sangre , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA