Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmacol Res ; 121: 202-212, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28465216

RESUMEN

ROS1 protein-tyrosine kinase fusion proteins are expressed in 1-2% of non-small cell lung cancers. The ROS1 fusion partners include CD74, CCDC6, EZR, FIG, KDELR2, LRIG3, MSN, SDC4, SLC34A2, TMEM106B, TMP3, and TPD52L1. Physiological ROS1 is closely related to the ALK, LTK, and insulin receptor protein-tyrosine kinases. ROS1 is a so-called orphan receptor because the identity of its activating ligand, if any, is unknown. The receptor is expressed during development, but little is expressed in adults and its physiological function is unknown. The human ROS1 gene encodes 2347 amino acid residues and ROS1 is the largest protein-tyrosine kinase receptor protein. Unlike the ALK fusion proteins that are activated by the dimerization induced by their amino-terminal portions, the amino-terminal domains of several of its fusion proteins including CD74 apparently lack the ability to induce dimerization so that the mechanism of constitutive protein kinase activation is unknown. Downstream signaling from the ROS1 fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module, the phosphatidyl inositol 3-kinase cell survival pathway, and the Vav3 cell migration pathway. Moreover, several of the ROS1 fusion proteins are implicated in the pathogenesis of a very small proportion of other cancers including glioblastoma, angiosarcoma, and cholangiocarcinoma as well as ovarian, gastric, and colorectal carcinomas. The occurrence of oncogenic ROS1 fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ROS1 inhibitors. Although the percentage of lung cancers driven by ROS1 fusion proteins is low, owing to the large number of new cases of non-small cell lung cancer per year, the number of new cases of ROS1-positive lung cancers is significant and ranges from 2000 to 4000 per year in the United States and 10,000-15,000 worldwide. Crizotinib was the first inhibitor approved by the US Food and Drug Administration for the treatment of ROS1-positive non-small cell lung cancer in 2016. Other drugs that are in clinical trials for the treatment of these lung cancers include ceritinib, cabozantinib, entrectinib, and lorlatinib. Crizotinib forms a complex within the front cleft between the small and large lobes of an active ROS1 protein-kinase domain and it is classified as type I inhibitor.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón/efectos de los fármacos , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Ensayos Clínicos como Asunto , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Modelos Moleculares , Proteínas de Fusión Oncogénica/análisis , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Tirosina Quinasas/análisis , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos
2.
Pharmacol Res ; 117: 343-356, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28077299

RESUMEN

Anaplastic lymphoma kinase is expressed in two-thirds of the anaplastic large-cell lymphomas as an NPM-ALK fusion protein. Physiological ALK is a receptor protein-tyrosine kinase within the insulin receptor superfamily of proteins that participates in nervous system development. The EML4-ALK fusion protein and four other ALK-fusion proteins play a fundamental role in the development in about 5% of non-small cell lung cancers. The amino-terminal portions of the ALK fusion proteins result in dimerization and subsequent activation of the ALK protein kinase domain that plays a key role in the pathogenesis of various tumors. Downstream signaling from the ALK fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module and the JAK/STAT cell survival pathways. Moreover, nearly two dozen ALK activating mutations are involved in the pathogenesis of childhood neuroblastomas. The occurrence of oncogenic ALK-fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ALK inhibitors. Crizotinib was the first such inhibitor approved by the US Food and Drug Administration for the treatment of ALK-positive non-small cell lung cancer in 2011. The median time for the emergence of crizotinib drug resistance is 10.5 months after the initiation of therapy. Such resistance prompted the development of second-generation drugs including ceritinib and alectinib, which are approved for the treatment of non-small cell lung cancer. Unlike the single gatekeeper mutation that occurs in drug-resistant epidermal growth factor receptor in lung cancer, nearly a dozen different mutations in the catalytic domain of ALK fusion proteins have been discovered that result in crizotinib resistance. Crizotinib, ceritinib, and alectinib form a complex within the front cleft between the small and large lobes of an inactive ALK protein-kinase domain with a compact activation segment. These drugs are classified as type I½ B inhibitors because they bind to an inactive enzyme and they do not extend past the gatekeeper into the back pocket of the drug binding site.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico , Animales , Humanos , Neoplasias Pulmonares/metabolismo
3.
Pharmacol Res ; 100: 1-23, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26207888

RESUMEN

Protein kinases play a predominant regulatory role in nearly every aspect of cell biology and they can modify the function of a protein in almost every conceivable way. Protein phosphorylation can increase or decrease enzyme activity and it can alter other biological activities such as transcription and translation. Moreover, some phosphorylation sites on a given protein are stimulatory while others are inhibitory. The human protein kinase gene family consists of 518 members along with 106 pseudogenes. Furthermore, about 50 of the 518 gene products lack important catalytic residues and are called protein pseudokinases. The non-catalytic allosteric interaction of protein kinases and pseudokinases with other proteins has added an important regulatory feature to the biochemistry and cell biology of the protein kinase superfamily. With rare exceptions, a divalent cation such as Mg2+ is required for the reaction. All protein kinases exist in a basal state and are activated only as necessary by divergent regulatory stimuli. The mechanisms for switching between dormant and active protein kinases can be intricate. Phosphorylase kinase was the first protein kinase to be characterized biochemically and the mechanism of its regulation led to the discovery of cAMP-dependent protein kinase (protein kinase A, or PKA), which catalyzes the phosphorylation and activation of phosphorylase kinase. This was the first protein kinase cascade or signaling module to be elucidated. The epidermal growth factor receptor-Ras-Raf-MEK-ERK signaling module contains protein-tyrosine, protein-serine/threonine, and dual specificity protein kinases. PKA has served as a prototype of this enzyme family and more is known about this enzyme than any other protein kinase. The inactive PKA holoenzyme consists of two regulatory and two catalytic subunits. After binding four molecules of cAMP, the holoenzyme dissociates into a regulatory subunit dimer (each monomer binds two cAMP) and two free and active catalytic subunits. PKA and all other protein kinase domains have a small amino-terminal lobe and large carboxyterminal lobe as determined by X-ray crystallography. The N-lobe and C-lobe form a cleft that serves as a docking site for MgATP. Nearly all active protein kinases contain a K/E/D/D signature sequence that plays important structural and catalytic roles. Protein kinases contain hydrophobic catalytic and regulatory spines and collateral shell residues that are required to assemble the active enzyme. There are two general kinds of conformational changes associated with most protein kinases. The first conformational change involves the formation of an intact regulatory spine to form an active enzyme. The second conformational change occurs in active kinases as they toggle between open and closed conformations during their catalytic cycles. Because mutations and dysregulation of protein kinases play causal roles in human disease, this family of enzymes has become one of the most important drug targets over the past two decades. Imatinib was approved by the United States FDA for the treatment of chronic myelogenous leukemia in 2001; this small molecule inhibits the BCR-Abl protein kinase oncoprotein that results from the formation of the Philadelphia chromosome. More than two dozen other orally effective mechanism-based small molecule protein kinase inhibitors have been subsequently approved by the FDA. These drugs bind to the ATP-binding site of their target enzymes and extend into nearby hydrophobic pockets. Most of these protein kinase inhibitors prolong survival in cancer patients only weeks or months longer than standard cytotoxic therapies. In contrast, the clinical effectiveness of imatinib against chronic myelogenous leukemia is vastly superior to that of any other targeted protein kinase inhibitor with overall survival lasting a decade or more. However, the near universal and expected development of drug resistance in the treatment of neoplastic disorders requires new approaches to solve this therapeutic challenge. Cancer is the predominant indication for these drugs, but disease targets are increasing. For example, we can expect the approval of new drugs inhibiting other protein kinases in the treatment of illnesses such as hypertension, Parkinson's disease, and autoimmune diseases.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA