Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 739
Filtrar
1.
Nutr Res Rev ; : 1-11, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263838

RESUMEN

Type 2 diabetes mellitus (T2DM) is a metabolic disorder that has reached epidemic proportions worldwide, posing a huge treat on people's health and quality of life. From a pathogenetic prospective, T2DM is driven by insulin resistance defined as a blunted response of tissues to insulin which leads to chronic hyperglycaemia. Mechanistically, lipotoxicity and particularly the intracellular accumulation of ceramides in the skeletal muscle and the liver, is a primary metabolic aberration underpinning insulin resistance. Indeed, intracellular ceramide accumulation can hamper insulin signal transduction pathway thereby promoting insulin resistance. This review will provide an updated overview of the metabolic defects underlaying ceramide buildup and the molecular mechanism by which ceramides imping upon insulin signalling. Additionally, the role of specific ceramide subspecies as potential biomarkers for T2DM and the role of both long- and medium-chain saturated fatty acids as a modulator of ceramide metabolism will be discussed.

2.
Cell Rep ; 43(10): 114746, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39302831

RESUMEN

Inhibition of the ceramide synthetic pathway with myriocin or an antisense oligonucleotide (ASO) targeting dihydroceramide desaturase (DES1) both improved hepatic insulin sensitivity in rats fed either a saturated or unsaturated fat diet and was associated with reductions in both hepatic ceramide and plasma membrane (PM)-sn-1,2-diacylglycerol (DAG) content. The insulin sensitizing effects of myriocin and Des1 ASO were abrogated by acute treatment with an ASO against DGAT2, which increased hepatic PM-sn-1,2-DAG but not hepatic C16 ceramide content. Increased PM-sn-1,2-DAG content was associated with protein kinase C (PKC)ε activation, increased insulin receptor (INSR)T1150 phosphorylation leading to reduced insulin-stimulated INSRY1152/AktS473 phosphorylation, and impaired insulin-mediated suppression of endogenous glucose production. These results demonstrate that inhibition of de novo ceramide synthesis by either myriocin treatment or DES1 knockdown protects against lipid-induced hepatic insulin resistance through a C16 ceramide-independent mechanism and that they mediate their effects to protect from lipid-induced hepatic insulin resistance via the PM-sn-1,2-DAG-PKCε-INSRT1150 phosphorylation pathway.

3.
J Lipid Res ; : 100651, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306041

RESUMEN

Glycogen storage disease type Ia (GSDIa) is a rare, inherited glucose-6-phosphatase-α (G6Pase-α) deficiency-induced carbohydrate metabolism disorder. Although hyperlipidaemia is a hallmark of GSDI, the extent of lipid metabolism disruption remains incompletely understood. Lipidomic analysis was performed to characterise the serum lipidome in patients with GSDIa, by including age- and sex-matched healthy controls and age-matched hypercholesterolemic controls. Metabolic control and dietary information biochemical markers were obtained from patients with GSDIa. Patients with GSDIa showed higher total serum lysophosphatidylcholine (Fold Change, FC 2.2, p < 0.0001), acyl-acyl-phosphatidylcholine (FC 2.1, p < 0.0001), and ceramide (FC 2.4, p < 0.0001) levels and bile acid (FC 0.7, p < 0.001), acylcarnitines (FC 0.7, p < 0.001), and cholesterol esters (FC 1.0, p < 0.001) than those of healthy controls, and higher di- (FC 1.1, p < 0.0001; FC 0.9, p < 0.01) and triacylglycerol (FC 6.3, p < 0.0001; FC 3.9, p < 0.01) levels than those of healthy controls and hypercholesterolemic subjects. Both total cholesterol (TC) and TG values correlated with Cer(d16:1/22:0), Cer(d18:1/20:0), Cer(d18:1/20:0(OH)), Cer(d18:1/22:0), Cer(d18:1/23:0), Cer(d18:1/24:1), Cer(d18:2/22:0), Cer(d18:2/24:1). TC also correlated with Cer(d18:1/24:0), Cer(d18:2/20:0), HexCer(d16:1/22:0), HexCer(d18:1/18:0), and Hex2Cer(d18:1/20:0). TGlevels correlated with Cer(d18:0/24:1). Alanine transaminase values correlated with Cer(d18:0/22:0), insulin with Cer(d18:1/22:1) and Cer(d18:1/24:1), and HDL with hexosylceramide (HexCer)(d18:2/23:0). These results expand on the currently known involvement of lipid metabolism in GSDIa. Circulating Cer may allow for refined dietary assessment compared with traditional biomarkers. Because specific lipid species are relatively easy to assess, they represent potential novel biomarkers of GSDIa.

4.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189176, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39233263

RESUMEN

Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Transducción de Señal , Esfingolípidos , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Esfingolípidos/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Microambiente Tumoral , Ceramidas/metabolismo , Lisofosfolípidos/metabolismo
5.
J Clin Med ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274263

RESUMEN

Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.

6.
Front Endocrinol (Lausanne) ; 15: 1454874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290326

RESUMEN

The hypothalamus lies at the intersection of brain and hormonal mechanisms governing essential bodily functions, including metabolic/body weight homeostasis and reproduction. While metabolism and fertility are precisely regulated by independent neuroendocrine axes, these are tightly connected, as reflection of the bidirectional interplay between the energy status of the organisms and their capacity to reproduce; a connection with important pathophysiological implications in disorders affecting these two crucial systems. Beyond the well-characterized roles of key hormones (e.g., leptin, insulin, ghrelin) and neuropeptides (e.g., melanocortins, kisspeptins) in the integral control of metabolism and reproduction, mounting evidence has pointed out a relevant function of cell energy sensors and lipid sensing mechanisms in the hypothalamic control of metabolism, with prominent roles also for metabolic sensors, such as mTOR, AMPK and SIRT1, in the nutritional regulation of key aspects of reproduction, such as pubertal maturation. We provide herein a synoptic overview of these novel regulatory pathways, with a particular focus on their putative function in the metabolic control of puberty, and delineate new avenues for further exploration of the intricate mechanisms whereby metabolism and reproduction are tightly connected.


Asunto(s)
Peso Corporal , Metabolismo Energético , Metabolismo de los Lípidos , Sistemas Neurosecretores , Reproducción , Humanos , Reproducción/fisiología , Animales , Peso Corporal/fisiología , Sistemas Neurosecretores/metabolismo , Sistemas Neurosecretores/fisiología , Metabolismo de los Lípidos/fisiología , Metabolismo Energético/fisiología , Hipotálamo/metabolismo
7.
Clin Diabetes Endocrinol ; 10(1): 32, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285502

RESUMEN

BACKGROUND: Ceramides have recently been identified as novel biomarkers associated with diabetes mellitus (DM) and major adverse cardiac and cerebrovascular events (MACCE). This study aims to explore their utility in diagnosing microvascular disease. METHODS: This study prospectively enrolled 309 patients from 2018 to 2020 into three groups: healthy controls (Group 1, N = 51), DM patients without acute myocardial infarction (AMI) (Group 2, N = 150), and DM patients with AMI (Group 3, N = 108). We assessed outcomes using stress perfusion cardiac magnetic resonance (CMR) imaging for coronary microvascular disease (CMD) (Outcome 1), retinography for retinal microvascular disease (RMD) (Outcome 2), both CMD and RMD (Outcome 3), and absence of microvascular disease (w/o MD) (outcome 4). We evaluated the classification performance of ceramides using receiver operating characteristic (ROC) analysis and multiple logistic regression. 11-ceramide panel previously identified by our research group as related to macrovascular disease were used. RESULTS: Average glycated hemoglobin (HbA1c) values were 5.1% in Group 1, 8.3% in Group 2, and 7.6% in Group 3. Within the cohort, CMD was present in 59.5% of patients, RMD in 25.8%, both CMD and RMD in 18.8%, and w/o MD in 38.5%. The AUC values for the reference ceramide ratios were as follows: CMD at 0.66 (p = 0.012), RMD at 0.61 (p = 0.248), CMD & RMD at 0.64 (p = 0.282), and w/o MD at 0.67 (p = 0.010). In contrast, the AUC values using 11-ceramide panel showed significant improvement in the outcomes prediction: CMD at 0.81 (p = 0.001), RMD at 0.73 (p = 0.010), CMD & RMD at 0.73 (p = 0.04), and w/o MD at 0.83 (p = 0.010). Additionally, the plasma concentration of C14.0 was notably higher in the w/o MD group (p < 0.001). CONCLUSIONS: Plasma ceramides serve as potential predictors for health status and microvascular disease phenotypes in diabetic patients.

8.
Adv Exp Med Biol ; 1460: 391-430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287860

RESUMEN

Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.


Asunto(s)
Resistencia a la Insulina , Obesidad , Humanos , Obesidad/metabolismo , Animales , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Estrés del Retículo Endoplásmico , Hígado/metabolismo , Hígado/patología , Diabetes Mellitus Tipo 2/metabolismo , Transducción de Señal , Estrés Oxidativo
9.
Int J Cosmet Sci ; 46(4): 488-493, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113288

RESUMEN

Anthony V. Rawlings has had 30+ years of experience in the general area of skin science. He has many scientific publications, and his work has been highly cited. He has made major contributions to our understanding of skin physiology, including xerosis and hydration, barrier function, desquamation, the corneocyte envelope, physical chemistry of stratum corneum lipids, photodamage and ethnic variation. He has held management positions with several companies in the US and UK, established AVR Consulting in 2002 and maintained a long-standing relationship with colleagues at University College London. His time as the Editor in Chief of the International Journal of Cosmetic Science was pivotal in the development of the journal. He worked hard and succeeded in getting the IJCS included in the PubMed database.


Anthony V. Rawlings a plus de 30 ans d'expérience dans le domaine général de la science de la peau. Il est l'auteur d'un grand nombre de publications scientifiques, et ses travaux ont été largement cités. Il a beaucoup contribué à notre compréhension de la physiologie de la peau, notamment la xérose et l'hydratation, la fonction de barrière, la desquamation, l'enveloppe des cornéocytes, la chimie physique des lipides de la couche cornée, le photodommage et les variations ethniques. Il a occupé des postes de direction dans plusieurs entreprises aux États­Unis et au Royaume­Uni, a créé AVR Consulting en 2002 et entretient une relation de longue date avec ses collègues de l'University College de Londres. Le temps qu'il a passé comme rédacteur en chef de l'International Journal of Cosmetic Science a été déterminant dans le développement de la revue. Il a travaillé dur et a réussi à faire inclure l'IJCS dans la base de données PubMed.


Asunto(s)
Fenómenos Fisiológicos de la Piel , Humanos , Piel/metabolismo
10.
Int J Cosmet Sci ; 46(4): 526-543, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113291

RESUMEN

Ceramides are a family of lipids constituted by a sphingoid base and a fatty acid. In the skin, they are mainly present in the stratum corneum where, with cholesterol and free fatty acids, they constitute the inter-corneocyte lipids. With the other lipid groups, they play a key role in the formation of dense lamellar structures between adjacent corneocytes, collectively ensuring the vital efficient barrier to water evaporation and protection from foreign agents´ penetration. Changes in ceramide level and relative composition, with potential impairment of lipid arrangement, have been evidenced in different skin conditions and skin diseases. Therefore, use of suitably formulated ceramides has been proposed for topical treatment to help re-structure damaged lipid arrangement and repair impaired skin barrier function. Nonetheless, the formulation of ceramides in products necessitates specific processes such as heating to high temperature before their introduction in the final formula. In this review on the structure, the role and the potential of ceramides for skincare, we point out the necessity of rigorous process when formulating ceramides into the final product. We demonstrate the counterproductive effects of undissolved ceramides on skin barrier repair capacity of the formulas, when assessed in different in vitro models of disrupted skin barrier.


Les céramides sont une famille de lipides constituée d'une base sphingoïde et d'un acide gras. Dans la peau, ils sont principalement présents dans la couche cornée où, avec le cholestérol et les acides gras libres, ils constituent les lipides inter­cornéocytes. Avec les autres groupes de lipides, ils jouent un rôle clé dans la formation de structures lamellaires denses entre les cornéocytes adjacents, assurant collectivement la barrière efficace vitale contre l'évaporation de l'eau et la protection contre la pénétration des agents étrangers. Des modifications du taux de céramides et de la composition relative, avec une altération potentielle de l'arrangement lipidique, ont été observées dans différentes affections cutanées et maladies cutanées. Par conséquent, l'utilisation de céramides formulés de manière appropriée a été proposée pour un traitement topique afin d'aider à restructurer la disposition des lipides endommagés et à réparer la fonction de barrière cutanée altérée. Néanmoins, la formulation des céramides dans les produits nécessite des processus spécifiques tels que le chauffage à température élevée avant leur introduction dans la formule finale. Dans cette revue sur la structure, le rôle et le potentiel des céramides pour les soins de la peau, nous soulignons la nécessité d'un processus rigoureux lors de la formulation des céramides dans le produit final. Nous démontrons les effets contre­productifs des céramides non dissous sur la capacité de réparation de la barrière cutanée des formules, lorsqu'ils sont évalués dans différents modèles in vitro de barrière cutanée perturbée.


Asunto(s)
Ceramidas , Cuidados de la Piel , Piel , Ceramidas/química , Humanos , Piel/metabolismo , Cuidados de la Piel/métodos
11.
Mol Ther ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39108096

RESUMEN

Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare lysosomal storage disorders caused by deficient acid ceramidase (ACDase) activity. Although both conditions are caused by mutations in the ASAH1 gene, clinical presentations differ considerably. FD patients usually die in childhood, while SMA-PME patients can live until adulthood. There is no treatment for FD or SMA-PME. Hematopoietic stem cell transplantation (HSCT) and gene therapy strategies for the treatment of ACDase deficiency are being investigated. We have previously generated and characterized mouse models of both FD and SMA-PME that recapitulate the symptoms described in patients. Here, we show that HSCT improves lifespan, behavior, hematopoietic system anomalies, and plasma cytokine levels and significantly reduces histiocytic infiltration and ceramide accumulation throughout the tissues investigated, including the CNS, in both models of ACDase-deficient mice. HSCT was also successful in preventing lesion development and significant demyelination of the spinal cord seen in SMA-PME mice. Importantly, we note that only early and generally pre-symptomatic treatment was effective, and kidney impairment was not improved in either model.

12.
Acta Naturae ; 16(2): 53-60, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188263

RESUMEN

Acute coronary events (ACEs) associated with a SARS-CoV-2 infection can significantly differ from classic ACEs. New biomarkers, such as ceramides, may help in the diagnosis and treatment of this disease. This study included 73 ACE patients for whom the SARS-CoV-2 infection was verified. Two subgroups were formed: the favorable outcome subgroup and the fatal outcome subgroup. Plasma samples were collected from all patients at the time of admission for a metabolomic analysis. The analysis of metabolites revealed that the ceramide levels were significantly lower in the fatal outcome subgroup than in the survivor subgroup. Therefore, determining ceramide levels in patients with ACEs in conjunction with COVID-19 may help assess the prognosis of these patients and manage their risks.

13.
J Lipid Res ; : 100631, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182604

RESUMEN

Sphingosine kinases (SphKs), enzymes that produce the bioactive lipids dihydrosphingosine 1-phosphate (dhS1P) and sphingosine 1-phosphate (S1P), are associated with various diseases, including cancer and infections. For this reason, a number of SphK inhibitors have been developed. Although off-target effects have been described for selected agents, SphK inhibitors are mostly used in research without monitoring the effects on the sphingolipidome. We have now investigated the effects of seven commonly used SphK inhibitors (5c, ABC294640 (opaganib), DMS, K145, PF-543, SLM6031434 and SKI-II) on profiles of selected sphingolipids in Chang, HepG2 and HUVEC cells. While we observed the expected (dh)S1P reduction for DMS, PF-543, SKI-II and SLM6031434, 5c showed hardly any effect. Remarkably, for K145 and ABC294640, both reported to be specific for SphK2, we observed dose-dependent strong increases in dhS1P and S1P across cell lines. Compensatory effects of SphK1 could be excluded, as this observation was also made in SphK1-deficient HK-2 cells. Furthermore, we observed effects on dihydroceramide desaturase (DEGS) activity for all inhibitors tested, as has been previously noted for ABC294640 and SKI-II. In additional mechanistic studies, we investigated the massive increase of dhS1P and S1P after short-term cell treatment with ABC294640 and K145 in more detail. We found that both compounds affect sphingolipid de novo synthesis, with 3-ketodihydrosphingosine reductase and DEGS as their targets. Our study emphasizes the urgency of monitoring cellular sphingolipid profiles when SphK inhibitors are used in mechanistic investigations, as none of the seven SphK inhibitors tested was free of unexpected on-target and/or off-target effects.

14.
Pflugers Arch ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177699

RESUMEN

Chronic unpredictable and unavoidable stress is associated with mental health problems such as depression and anxiety, whereas cycles of stress and stress relief strengthen resilience. It has been suggested that increased breakdown of brain endocannabinoids (eCB) promotes a feeling of adversity. To assess the impact of stress on bioactive lipid homeostasis, we analyzed eCB, sphingolipids, and ceramides in seven brain regions and plasma in a mouse model of chronic unpredictable mild stress. Chronic unpredictable mild stress (CUMS) was associated with low levels of anandamide in hippocampus and prefrontal cortex in association with indicators of anxiety (elevated plus maze). Oppositely, CUMS caused elevated levels of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0) in the midbrain and thalamus, which was associated with readouts of increased stress resilience, i.e., marble burying and struggling in the tail suspension tests. In the periphery, elevated plasma levels of ceramides revealed similarities with human major depression and suggested unfavorable effects of stress on metabolism, but plasma lipids were not associated with body weight, sucrose consumption, or behavioral features of depression or anxiety. The observed brain site-specific lipid changes suggest that the forebrain succumbs to adverse stress effects while the midbrain takes up defensive adjustments.

15.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201268

RESUMEN

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant and a potent aryl hydrocarbon receptor (AHR) ligand, causes delayed intestinal motility and affects the survival of enteric neurons. In this study, we investigated the specific signaling pathways and molecular targets involved in TCDD-induced enteric neurotoxicity. Immortalized fetal enteric neuronal (IM-FEN) cells treated with 10 nM TCDD exhibited cytotoxicity and caspase 3/7 activation, indicating apoptosis. Increased cleaved caspase-3 expression with TCDD treatment, as assessed by immunostaining in enteric neuronal cells isolated from WT mice but not in neural crest cell-specific Ahr deletion mutant mice (Wnt1Cre+/-/Ahrb(fl/fl)), emphasized the pivotal role of AHR in this process. Importantly, the apoptosis in IM-FEN cells treated with TCDD was mediated through a ceramide-dependent pathway, independent of endoplasmic reticulum stress, as evidenced by increased ceramide synthesis and the reversal of cytotoxic effects with myriocin, a potent inhibitor of ceramide biosynthesis. We identified Sptlc2 and Smpd2 as potential gene targets of AHR in ceramide regulation by a chromatin immunoprecipitation (ChIP) assay in IM-FEN cells. Additionally, TCDD downregulated phosphorylated Akt and phosphorylated Ser9-GSK-3ß levels, implicating the PI3 kinase/AKT pathway in TCDD-induced neurotoxicity. Overall, this study provides important insights into the mechanisms underlying TCDD-induced enteric neurotoxicity and identifies potential targets for the development of therapeutic interventions.


Asunto(s)
Apoptosis , Ceramidas , Estrés del Retículo Endoplásmico , Neuronas , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Transducción de Señal , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Animales , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ceramidas/metabolismo , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos
16.
Metabolites ; 14(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39195560

RESUMEN

Our recent findings revealed that human adipose tissues (AT)-derived extracellular vesicles (adiposomes) vary in cargo among obese and lean individuals. The main objective of this study was to investigate the adiposomal lipid profiles and their correlation with cardiometabolic risk factors. AT samples were collected from obese subjects and lean controls and analyzed for their characteristics and lipid content. In addition, we measured the correlation between adiposomal lipid profiles and body composition, glucose and lipid metabolic profiles, brachial artery vasoreactivity, AT arteriolar flow-induced dilation, and circulating markers such as IL-6, C-reactive protein, and nitric oxide (NO). Compared to lean controls, adiposomes isolated from obese subjects were higher in number after normalization to AT volume. The two major lipid classes differentially expressed were lysophosphatidylcholine/phosphatidylcholine (LPC/PC) and ceramides (Cer). All lipids in the LPC/PC class were several-fold lower in adiposomes from obese subjects compared to lean controls, on top of which were PC 18:2, PC 18:1, and PC 36:3. Most ceramides were markedly upregulated in the obese group, especially Cer d37:0, Cer d18:0, and Cer d39:0. Regression analyses revealed associations between adiposomal lipid profiles and several cardiometabolic risk factors such as body mass index (BMI), fat percentage, insulin resistance, arteriolar and brachial artery vasoreactivity, NO bioavailability, and high-density lipoproteins (HDL-C). We conclude that the ability of adiposomes from obese subjects to disrupt cardiometabolic function could be partly attributed to the dysregulated lipid cargo.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38972782

RESUMEN

Central ceramides regulate energy metabolism by impacting hypothalamic neurons. This allows ceramides to integrate endocrine signals - such as leptin, ghrelin, thyroid hormones, or estradiol - and to modulate the central control of puberty. In this forum article we discuss recent evidence suggesting that specific ceramide species and neuronal populations are involved in these effects.

18.
Photochem Photobiol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054579

RESUMEN

Sun exposure induces major skin alterations, but its effects on skin metabolites and lipids remain largely unknown. Using an original reconstructed human epidermis (RHE) model colonized with human microbiota and supplemented with human sebum, we previously showed that a single dose of simulated solar radiation (SSR) significantly impacted the skin metabolome and microbiota. In this article, we further analyzed SSR-induced changes on skin metabolites and lipids in the same RHE model. Among the significantly altered metabolites (log2-fold changes with p ≤ 0.05), we found several natural moisturizing factors (NMFs): amino acids, lactate, glycerol, urocanic acid, pyrrolidone carboxylic acid and derivatives. Analyses of the stratum corneum lipids also showed that SSR induced lower levels of free fatty acids and higher levels of ceramides, cholesterols and its derivatives. An imbalance in NMFs and ceramides combined to an increase of proinflammatory lipids may participate in skin permeability barrier impairment, dehydration and inflammatory reaction to the sun. Our skin model also allowed the evaluation of an innovative ultraviolet/blue light (UV/BL) broad-spectrum sunscreen with a high sun protection factor (SPF50+). We found that using this sunscreen prior to SSR exposure could in part prevent SSR-induced alterations in NMFs and lipids in the skin ecosystem RHE model.

19.
Front Physiol ; 15: 1411332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077757

RESUMEN

The selection for rapid growth in chickens has rendered meat-type (broiler) chickens susceptible to develop metabolic syndrome and thus inflammation. The sphingolipid ceramide has been linked as a marker of oxidative stress in mammals, however, the relationship between sphingolipid ceramide supply and oxidative stress in broiler chickens has not been investigated. Therefore, we employed a lipidomic approach to investigate the changes in circulating sphingolipid ceramides in context of allopurinol-induced oxidative stress in birds. Day zero hatched chicks (n = 60) were equally divided into six groups; an unsupplemented control, an allopurinol group (25 mg/kg body weight), a conjugated linoleic acid (CLA) group where half of the oil used in the control diet was substituted for a CLA oil mixture, a CLA and an allopurinol group utilizing the same dose of CLA and allopurinol, a berberine (BRB) group consisting of berberine supplementation (200 mg/kg feed), and a BRB and allopurinol group, utilizing the same dose of BRB and allopurinol. Conjugated linoleic acid and berberine were utilized to potentially enhance antioxidant activity and suppress the oxidative stress induced by allopurinol treatment. Body weight, plasma uric acid, nonesterified fatty acids (NEFA) and sphingolipid ceramides were quantified. Allopurinol induced an inflammatory state as measured by a significant reduction in plasma uric acid - an antioxidant in birds as well as a metabolic waste product. Results showed that both total and saturated sphingolipid ceramides declined (p < 0.05) with age in unsupplemented chicks, although plasma ceramides C16:0 and 18:0 increased in concentration over the study period. Simple total and saturated sphingolipid ceremide's were further decreased (p < 0.05) with allopurinol supplementation, however, this may be an indirect consequence of inducing an inflammatory state. Neither CLA or BRB were able to significantly attenuate the decline. The administration of allopurinol specifically targets the liver which in birds, is the primary organ for fatty acids synthesis. For this reason, sphingolipid ceramide production might have been unwittingly affected by the addition of allopurinol.

20.
Bio Protoc ; 14(13): e5028, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39007159

RESUMEN

Mitochondria are vital organelles essential for cellular functions, but their lipid composition and response to stressors are not fully understood. Recent advancements in lipidomics reveal insights into lipid functions, especially their roles in metabolic perturbations and diseases. Previous methods have focused on the protein composition of mitochondria and mitochondrial-associated membranes. The advantage of our technique is that it combines organelle isolation with targeted lipidomics, offering new insights into the composition and dynamics of these organelles in pathological conditions. We developed a mitochondria isolation protocol for L6 myotubes, enabling lipidomics analysis of specific organelles without interference from other cellular compartments. This approach offers a unique opportunity to dissect lipid dynamics within mitochondria and their associated ER compartments under cellular stress. Key features • Analysis and quantification of lipids in mitochondria-ER fraction through liquid chromatography-tandem mass spectrometry-based lipidomics (LC-MS/MS lipidomics). • LC-MS/MS lipidomics provide precise and unbiased information on the lipid composition in in vitro systems. • LC-MS/MS lipidomics facilitates the identification of lipid signatures in mammalian cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA