Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arthropod Struct Dev ; 77: 101309, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37879171

RESUMEN

Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.


Asunto(s)
Anfípodos , Neuropéptidos , Animales , Neuropéptidos/metabolismo , Neuronas , Encéfalo , Neurópilo
2.
BMC Biol ; 20(1): 26, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35073910

RESUMEN

BACKGROUND: The evolution of the brain and its major neuropils in Panarthropoda (comprising Arthropoda, Tardigrada and Onychophora) remains enigmatic. As one of the closest relatives of arthropods, onychophorans are regarded as indispensable for a broad understanding of the evolution of panarthropod organ systems, including the brain, whose anatomical and functional organisation is often used to gain insights into evolutionary relations. However, while numerous recent studies have clarified the organisation of many arthropod nervous systems, a detailed investigation of the onychophoran brain with current state-of-the-art approaches is lacking, and further inconsistencies in nomenclature and interpretation hamper its understanding. To clarify the origins and homology of cerebral structures across panarthropods, we analysed the brain architecture in the onychophoran Euperipatoides rowelli by combining X-ray micro-computed tomography, histology, immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. RESULTS: Here, we use this detailed information to generate a consistent glossary for neuroanatomical studies of Onychophora. In addition, we report novel cerebral structures, provide novel details on previously known brain areas, and characterise further structures and neuropils in order to improve the reproducibility of neuroanatomical observations. Our findings support homology of mushroom bodies and central bodies in onychophorans and arthropods. Their antennal nerve cords and olfactory lobes most likely evolved independently. In contrast to previous reports, we found no evidence for second-order visual neuropils, or a frontal ganglion in the velvet worm brain. CONCLUSION: We imaged the velvet worm nervous system at an unprecedented level of detail and compiled a comprehensive glossary of known and previously uncharacterised neuroanatomical structures to provide an in-depth characterisation of the onychophoran brain architecture. We expect that our data will improve the reproducibility and comparability of future neuroanatomical studies.


Asunto(s)
Artrópodos , Animales , Encéfalo , Sistema Nervioso , Reproducibilidad de los Resultados , Microtomografía por Rayos X
3.
J Comp Neurol ; 528(6): 906-934, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31625611

RESUMEN

The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli. It receives prominent input from the visual system and plays a major role in spatial orientation of the animals. Vertical slices and horizontal layers of the CX are formed by columnar, tangential, and pontine neurons. While pontine and columnar neurons have been analyzed in detail, especially in the fruit fly and desert locust, understanding of the organization of tangential cells is still rudimentary. As a basis for future functional studies, we have studied the morphologies of tangential neurons of the CX of the desert locust Schistocerca gregaria. Intracellular dye injections revealed 43 different types of tangential neuron, 8 of the PB, 5 of the CBL, 24 of the CBU, 2 of the noduli, and 4 innervating multiple substructures. Cell bodies of these neurons were located in 11 different clusters in the cell body rind. Judging from the presence of fine versus beaded terminals, the vast majority of these neurons provide input into the CX, especially from the lateral complex (LX), the superior protocerebrum, the posterior slope, and other surrounding brain areas, but not directly from the mushroom bodies. Connections are largely subunit- and partly layer-specific. No direct connections were found between the CBU and the CBL. Instead, both subdivisions are connected in parallel with the PB and distinct layers of the noduli.


Asunto(s)
Saltamontes/anatomía & histología , Neuronas/citología , Neurópilo/citología , Animales , Femenino , Masculino
4.
J Bone Miner Res ; 32(3): 624-632, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27739103

RESUMEN

To determine the association of weight loss with risk of clinical fractures at the hip, spine, and pelvis (central body fractures [CBFs]) in older men with and without accounting for the competing risk of mortality, we used data from 4523 men (mean age 77.5 years). Weight change between baseline and follow-up (mean 4.5 years between examinations) was categorized as moderate loss (loss ≥10%), mild loss (loss 5% to <10%), stable (<5% change) or gain (gain ≥5%). Participants were contacted every 4 months after the follow-up examination to ascertain vital status (deaths verified by death certificates) and ask about fractures (confirmed by radiographic reports). Absolute probability of CBF by weight change category was estimated using traditional Kaplan-Meier method and cumulative incidence function accounting for competing mortality risk. Risk of CBF by weight change category was determined using conventional Cox proportional hazards regression and subdistribution hazards models with death as a competing risk. During an average of 8 years, 337 men (7.5%) experienced CBF and 1569 (34.7%) died before experiencing this outcome. Among men with moderate weight loss, CBF probability was 6.8% at 5 years and 16.9% at 10 years using Kaplan-Meier versus 5.7% at 5 years and 10.2% at 10 years using a competing risk approach. Men with moderate weight loss compared with those with stable weight had a 1.6-fold higher adjusted risk of CBF (HR 1.59; 95% CI, 1.06 to 2.38) using Cox models that was substantially attenuated in models accounting for competing mortality risk and no longer significant (subdistribution HR 1.16; 95% CI, 0.77 to 1.75). Results were similar in analyses substituting hip fracture for CBF. Older men with weight loss who survive are at increased risk of CBF, including hip fracture. However, ignoring the competing mortality risk among men with weight loss substantially overestimates their long-term fracture probability and relative fracture risk. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Fracturas Óseas/epidemiología , Fracturas Óseas/mortalidad , Pérdida de Peso/fisiología , Anciano , Fracturas Óseas/fisiopatología , Humanos , Estimación de Kaplan-Meier , Masculino , Probabilidad , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA