Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259018

RESUMEN

Controlling the self-assembly of cellulose nanocrystals (CNCs) requires precise control over their surface chemistry for the directed assembly of advanced nanocomposites with tailored mechanical, thermal, and optical properties. In this work, in contrast to traditional chemistries, we conducted highly selective click-chemistry functionalization of cellulose nanocrystals with complementary DNA strands via a three-step hybridization-guided process. By grafting terminally functionalized oligonucleotides through copper-free click chemistry, we successfully facilitated the assembly of brushlike DNA-modified CNCs into bundled nanostructures with distinct chiral optical dichroism in thin films. The complexation behavior of grafted DNA chains during the evaporation-driven formation of ultrathin films demonstrates the potential for mediating chiral interactions between the DNA-branched nanocrystals and their assembly into chiral bundles. Furthermore, we discuss the future directions and challenges that include new avenues for the development of functional, responsive, and bioderived nanostructures capable of dynamic reconfiguration via selective complexation, further surface modification strategies, mitigating diverse CNC aggregation, and exploring environmental conditions for the CNC-DNA assembly.

2.
Carbohydr Polym ; 346: 122650, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245509

RESUMEN

Lyotropic chiral nematic cellulose nanocrystals (CNCs) have attracted significant attention and great progress has been made. Investigating their physical parameters, especially the twist elastic constant (K22), is pivotal for advancing our comprehension of fundamental viscoelastic property of chiral nematic phase. In this study, we demonstrate a straightforward method to simultaneously estimate K22 and helical twisting power (Kt) of chiral nematic CNCs. This method involves analyzing rheology properties and electro-response of CNCs, focusing on the rotational dynamics and structural reconfiguration of CNC tactoids under an electric field. By examining the rotation dynamics of CNC tactoids under an electric field, together with the viscosity characterization, the anisotropic dielectric susceptibility (∆χ) of chiral nematic CNC along the helix axis was determined. Subsequently, K22/∆χn was extracted by analyzing CNC tactoid pitch evolution under an electric field, employing the de Gennes model. The K22 for different concentrated CNCs is finally estimated by integrating experimental results and theory. It is shown that the chiral nematic CNCs present concentration-dependent K22, ranging from 0.05 to 0.14 pN, while Kt spans from 0.06 to 0.14 pN/µm. This study offers a comprehensive understanding of the CNC fundamental viscoelastic property and opens up new avenues for K22 measurement in other lyotropic liquid crystals.

3.
Carbohydr Polym ; 344: 122542, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218559

RESUMEN

To improve the limitations of water-based lubricants, a novel cellulose nanocrystal based supramolecular hydrogel (CNC/x-DG/y) was prepared by mixing cellulose nanocrystal (CNC) and diglycerol (DG) into deionized water (DW). The hydrogel was characterized to determine its material ratio and gelation mechanism. When DW was fixed at 1 mL, CNC content should be no <2.4 wt% and DG content 0.1-1.3 mL. The gelification was driven by the multiple H-bond network between CNC and DG, which immobilized water molecules. The rheological performances, the anti-rust property and the volatilization behaviour of the hydrogel were further studied. The results showed that the hydrogel had satisfactory viscoelasticity, excellent thermal stability, strong creep recovery, high anti-rust performance and low volatilization rate, which were exactly its advantages for use as lubricant. A typical representative of the hydrogel, namely CNC/2.4-DG/0.1, was selected to evaluate the tribological performances, and the resulting worn surfaces were analyzed. CNC/2.4-DG/0.1 exhibited a lower friction coefficient of 0.059 and a smaller wear volume of 0.81 × 10-3 mm3, compared to DW(1 mL) + CNC(2.4 wt%) and DW(1 mL) + DG(0.1 mL). The outstanding tribological performances of CNC/2.4-DG/0.1 were reasonably attributed to the synergistic mending effect of CNC and DG and the dissipative effect of H-bonds between the two.

4.
Food Chem ; 460(Pt 2): 140674, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089025

RESUMEN

Citrus oil (CO) is a commonly used natural flavor with high volatility, which is not conducive to sustained release under food environmental stress. This study constructed novel ß-cyclodextrin/cationic cellulose nanocrystal (ß-CD/C-CNC) complexes via noncovalent interaction, which were used to stabilize CO-loaded Pickering emulsions (PEß-CD/C-CNC). The C-CNC greatly improved the physical stability, droplet dispersion and viscoelasticity of PEß-CD/C-CNC by forming a tight network structure, as verified by rheological behavior. Moreover, C-CNC improved the wettability of ß-CD/C-CNC complexes and enhanced the interaction between adjacent ß-CD/C-CNC complexes. C-CNC also contributed to the interfacial viscoelasticity, hydrated mass, and layer thickness via the interfacial dilational modulus and QCM-D. ß-CD/C-CNC complexes adsorbed on the oil-water interface gave rise to a dense filling layer as a physical barrier, enhancing the sustained-release performance of PEß-CD/C-CNC by limiting diffusion of citrus essential oil into the headspace. This study provides new technical approaches for aroma retention in the food industry.


Asunto(s)
Celulosa , Citrus , Preparaciones de Acción Retardada , Emulsiones , Aceites Volátiles , beta-Ciclodextrinas , Emulsiones/química , Citrus/química , beta-Ciclodextrinas/química , Celulosa/química , Aceites Volátiles/química , Preparaciones de Acción Retardada/química , Reología , Viscosidad , Cationes/química , Nanopartículas/química
5.
Int J Biol Macromol ; 278(Pt 1): 134643, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128733

RESUMEN

Chronic wounds (CWs) treatment still represents a demanding medical challenge. Several intrinsic physiological signals (i.e., pH) help to stimulate and support wound healing. CWs, in fact, are characterized by a predominantly alkaline pH of the exudate, which acidifies as the wound heals. Therefore, pH-responsive wound dressings hold great potential owing to their capability of tuning their functions according to the wound conditions. Herein, porous chitosan (CS)-based scaffolds loaded with cellulose nanocrystals (CNCs) and graphene oxide (GO) were successfully fabricated using a freeze-drying method. CNCs were extracted from bagasse pulps fibers through acid hydrolysis. GO was synthesised by Hummer's method. The scaffolds were then ionically cross-linked using the amino acid L-Arginine (Arg), as a bioactive agent, and tested as potential pH-responsive wound dressing. Notably, the effect of CNCs and GO singly and simultaneously loaded within the CS-Arg scaffolds was investigated. The modulation of CNCs and GO content within CS-Arg scaffolds facilitated the development of scaffolds with an optimal pH-dependent swelling ratio capability and extended degradation time. Furthermore, CS/CNC/GO-Arg scaffolds exhibited tuned biological features, in terms of antimicrobial activity, cellular proliferation/migration ability, and the expression of extracellular matrix specific markers (i.e., elastin and collagen I) related to wound healing in human dermal fibroblasts.


Asunto(s)
Vendajes , Celulosa , Quitosano , Grafito , Nanopartículas , Cicatrización de Heridas , Grafito/química , Quitosano/química , Celulosa/química , Celulosa/farmacología , Nanopartículas/química , Concentración de Iones de Hidrógeno , Cicatrización de Heridas/efectos de los fármacos , Humanos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Andamios del Tejido/química , Proliferación Celular/efectos de los fármacos
6.
Int J Biol Macromol ; 278(Pt 4): 134984, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217046

RESUMEN

In this work, self-healing cellulose nanocrystals/fluorinated polyacrylate with dual dynamic networks of photoreversible crosslinking network and high-density hydrogen bonds was prepared by Pickering emulsion polymerization. The main work was to study the effects of 7-(2-methacryloyloxy)-4-methylcoumarin (CMA) and 2-ureido-4[1H]-pyrimidinone methyl methacrylate (UPyMA) monomer dosage on emulsion polymerization and latex film properties. The monomer conversion increased first and then decreased as the CMA and UPyMA monomer dosage increased, while a reverse trend was noted for the particle size and particle size distribution. Incorporating UPyMA allowed the rapid formation of hydrogen bonds at the crosslinking sites, which increased the interaction force between the healing surfaces. Besides, reversible photocrosslinking reaction of coumarin groups provided another support for self-healing performance. Moreover, the influence of self-healing temperature, self-healing time and UV irradiation on the self-healing ability was also systematically investigated The tensile strength of the prepared cellulose nanocrystals/fluorinated polyacrylate latex film exhibited a self-healing efficiency of 91.4 % under 365 nm UV irradiation and 80 °C for 12 h. The latex film had excellent thermal stability as was shown by TG and DTG analyses. The outstanding self-healing capability of latex film was attributed to the reversible photodimerization of coumarin groups and multiple hydrogen bonds. In addition, the water-oil repellent and mechanical properties of the latex films were improved as the CMA and UPyMA monomer dosage increased.


Asunto(s)
Resinas Acrílicas , Celulosa , Cumarinas , Enlace de Hidrógeno , Nanopartículas , Celulosa/química , Cumarinas/química , Nanopartículas/química , Resinas Acrílicas/química , Polimerizacion , Tamaño de la Partícula , Rayos Ultravioleta , Resistencia a la Tracción , Temperatura
7.
Int J Biol Macromol ; 278(Pt 3): 134842, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159801

RESUMEN

Cellulose nanocrystal is a nanomaterial that has a large specific surface area, high surface energy, and high strength. As well, it is biocompatible, environmentally friendly, nontoxic, and can be extracted from biomass resources. Because of these features, cellulose nanocrystals can be used to improve the mechanical properties of polymer matrices with a shape memory effect and as a shape memory switch. In this study, a polytrimethylene ether glycol-based thermoplastic polyurethane (TPU)/cellulose nanocrystal (CNC) composite was prepared via an in-situ polymerization process to create a self-healing polymer matrix. Also, the effect of CNC doses in low concentrations (≤2 wt%) on the different properties of the resulting bio-nanocomposite was investigated. The results showed that the introduction of CNCs affects the hydrogen bonding within the polymer matrix and provides better thermal stability in the high temperature range than pure TPU. Furthermore, the samples with 0 wt%, 0.75 wt%, 1 wt%, and 2 wt% of CNC exhibited an increasing trend in tensile strength with values of 11.71 MPa, 18.95 MPa, 17.88 MPa, and 26.18 MPa, respectively, which indicates a remarkable improvement in mechanical strength. The shape memory behavior was also notably prominent in this polymer composite, where the composite containing 2 wt% of CNC showed the fastest recovery time (240 s) at 75 °C with the highest shape retention. Moreover, their flow behavior and deformation capacity were examined through rheology tests. Besides, docking simulations were conducted in silico to assess the interaction of the TPU/CNC composite with the DNA gyrase enzyme. The interaction between CNC/TPU composite and DNA gyrase was meticulously analyzed across 10 distinct conformations, yielding docking scores ranging from -6.5 Kcal/mol to -5.3 Kcal/mol. Overall, the physico-mechanical properties of the TPU/CNC composites were substantially enhanced with the incorporation of nanofillers.


Asunto(s)
Celulosa , Nanocompuestos , Nanopartículas , Poliuretanos , Celulosa/química , Nanopartículas/química , Poliuretanos/química , Nanocompuestos/química , Resistencia a la Tracción , Fenómenos Mecánicos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular
8.
Int J Biol Macromol ; 278(Pt 4): 134990, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181366

RESUMEN

In recent times, cellulose, an abundant and renewable biopolymer, has attracted considerable interest due to its potential applications in nanotechnology. This review explores the latest developments in cellulose-based nanomaterial synthesis, functionalization, and commercial applications. Beginning with an overview of the diverse sources of cellulose and the methods employed for its isolation and purification, the review delves into the various techniques used for the synthesis of cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs), highlighting their unique properties and potential applications. Furthermore, the functionalization strategies employed to enhance the properties and tailor the functionalities of cellulose-based nanomaterials were discussed. The review also provides insights into the emerging commercial applications of cellulose-based nanomaterials across diverse sectors, including packaging, biomedical engineering, textiles, and environmental remediation. Finally, challenges and prospects for the widespread adoption of cellulose-based nanomaterials are outlined, emphasizing the need for further research and development to unlock their full potential in sustainable and innovative applications.


Asunto(s)
Celulosa , Nanoestructuras , Celulosa/química , Nanoestructuras/química , Nanofibras/química , Nanotecnología/métodos , Nanopartículas/química
9.
Small Methods ; : e2400447, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115353

RESUMEN

Various fascinating optical characteristics in organisms encourage scientists to develop biomimetic synthesis strategies and mimic their unique microstructure. Inspired by the Chameleon's skin with tunable color and superior flexibility, this work designs the evaporated-induced self-assembly technique to synthesize the chiral photonic crystal film. Ultrasonic-intensified and additive-assisted techniques synergistically optimize the film properties, on the aspects of optic and mechanic. The film shows considerable rigidity and superior flexibility, which can undergo multiple mechanical deformations. Without destroying the chiral nematic structure, the ultimate strain approaches 50%, which exceeds most cellulose-derived film materials. It also integrates excellent optical performance. The film color can cover the total visible region by tuning the photonic bandgap and has angle-dependent properties. It can make the response to humidity and solvents, and chromaticity variation reflects the degree of stimulation. Importantly, this structural-dependent color change is reversible. Lastly, the photonic crystal materials with excellent mechanics and unique optics have been applied in the security. The anti-counterfeiting material design contains photonic crystal ink, repeatable writing paper, information-hiding film, and color-changing labels, with the features of environmentally friendly, economical, non-destructive, and convenient for authentication.

10.
Int J Biol Macromol ; 276(Pt 1): 134119, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098456

RESUMEN

Hydroxyl groups on the surface of cellulose nanocrystals (CNC) are modified by chemical methods, CNC and the modified CNC are used as fillers to prepare PHB/cellulose nanocomposites. The absorption peak of carbonyl group of the modified CNC (CNC-CL and CNC-LA) appears in the FT-IR spectra, which proves that the modifications are successful. Thermal stability of CNC-CL and CNC-LA is better than that of pure CNC. Pure CNC is beneficial to the nucleation of PHB, while CNC-CL and CNC-LA inhibit the nucleation of PHB. The spherulite size of PHB and its nanocomposites increases linearly over time, and the maximum growth rate of PHB spherulite exists at 90 °C. Rheological analysis shows that viscous deformation plays the dominant role in PHB, PHBC and PHBC-CL samples, while the elastic deformation is dominant in PHBC-LA. According to the rheological data, the dispersion of CNC-CL and CNC-LA in PHB is better than that of CNC. This work demonstrates the impact of modified CNC on the crystallization and viscoelastic properties of PHB. Moreover, the interface enhancement effect of modified CNC on PHB/CNC nanomaterials is revealed from the crystallization and rheology perspectives.


Asunto(s)
Celulosa , Cristalización , Hidroxibutiratos , Nanopartículas , Poliésteres , Reología , Celulosa/química , Nanopartículas/química , Hidroxibutiratos/química , Poliésteres/química , Propiedades de Superficie , Nanocompuestos/química , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad , Temperatura , Polihidroxibutiratos
11.
Materials (Basel) ; 17(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39203158

RESUMEN

Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and geometries. In this work, classes of stretchable mechanochromic materials that provide visual color changes when tension is applied, namely, dyes, polymer dispersed liquid crystals, liquid crystal elastomers, cellulose nanocrystals, photonic nanostructures, hydrogels, and hybrid systems (combinations of other classes) are reviewed. For each class, synthesis and processing, as well as the mechanism of color change are discussed. To enable materials selection across the classes, the mechanochromic sensitivity of the different classes of materials are compared. Photonic systems demonstrate high mechanochromic sensitivity (Δnm/% strain), large dynamic color range, and rapid reversibility. Further, the mechanochromic behavior can be predicted using a simple mechanical model. Photonic systems with a wide range of mechanical properties (elastic modulus) have been achieved. The addition of dyes to photonic systems has broadened the dynamic range, i.e., the strain over which there is an optical change. For applications in which irreversible color change is desired, dye-based systems or liquid crystal elastomer systems can be formulated. While many promising applications have been demonstrated, manufacturing uniform color on a large scale remains a challenge. Standardized characterization methods are needed to translate materials to practical applications. The sustainability of mechanochromic materials is also an important consideration.

12.
J Hazard Mater ; 476: 135097, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970975

RESUMEN

Antimony is a highly poisonous pollutant that needs to be removed from water to ensured safety. In this work, we have fabricated a novel adsorbent, the ferric-manganese oxide (FeMnOx) nanoparticles embedded cellulose nanocrystal-based polymer hydrogel (FeMnOx @CNC-g-PAA/qP4VP, denoted as FMO@CPqP), specifically engineered for the remediation of antimony-laden water. Comprehensive evaluations have been conducted to investigate the efficacy of the FMO@CPqP hydrogel in removal of antimony from water. The hydrogel exhibits superior affinity for antimony, with maximum adsorption capacities of 276.1 mg/g for Sb(III) and 286.8 mg/g for Sb(V). The adsorptive dynamics, governed by the kinetics and isotherm analyses, elucidate that the immobilization of both Sb(III) and Sb(V) is facilitated through a homogeneous and monolayer chemisorption mechanism. The hydrogel has a three-dimensional interconnected porous structure and exhibits good swelling behavior, which facilitates the rapid absorption of antimony ions by this high surface area hydrogel into the channels. Furthermore, various effects, including the oxidation and inner-sphere coordination mediated by FeMnOx NPs and the electrostatic attractions of the quaternized P4VP chains, promote the immobilization of antimony species. Owing to its high removal efficiency, stability and reusability, the FMO@CPqP hydrogel emerges as an exemplary candidate for the removal of antimony contaminants in water treatment processes.

13.
Chemosphere ; 363: 142927, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39048049

RESUMEN

Membrane-based separation technologies have drawn significant interest because of their compactness, low energy consumption, and ability to be easily integrated with existing processes. There has been significant interest in the utilization of natural materials derived from sustainable and renewable resources for membrane fabrication. Cellulose is one of the promising polymers which has been extensively studied in membrane fabrication and modification due to its abundant availability, non-toxicity and biodegradability. While there have been several reviews in recent years separately on TFC membranes and cellulose-based materials for different applications, reviews exclusively focusing on cellulosic nanomaterials-based TFC membranes are still lacking. This review provides an overview of the types of cellulose nanomaterials exploited for the development and modification of TFC membranes, particularly those used for desalination and wastewater treatment. We have presented a brief description of cellulose-based nanomaterials followed by a detailed discussion of different studies addressing each cellulose nanomaterial separately. In addition, we have summarized the performance of different studies in the literature, paying particular attention to the enhancement achieved by the incorporation of cellulose nanomaterial in the membrane.


Asunto(s)
Celulosa , Membranas Artificiales , Nanoestructuras , Nylons , Purificación del Agua , Celulosa/química , Nanoestructuras/química , Purificación del Agua/métodos , Nylons/química , Aguas Residuales/química , Polímeros/química
14.
Adv Sci (Weinh) ; 11(31): e2401983, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38894574

RESUMEN

Physical unclonable function (PUF) is attractive in modern encryption technologies. Addressing the disadvantage of slow data storage/authentication in optical PUF is paramount for practical applications but remains an on-going challenge. Here, a highly efficient PUF strategy based on random structural color domains (SCDs) of cellulose nanocrystal (CNC) is proposed for the first time, combing with hyperspectral imaging system (HIS) for ultrafast storage and authentication. By controlling the growth and fusion behavior of the tactoids of CNC, the SCDs display an irregular and random distribution of colors, shapes, sizes, and reflectance spectra, which grant unique and inherent fingerprint-like characteristics that are non-duplicated. Based on images and spectra, these fingerprint features are used to develop two sets of PUF key generation methods, which can be respectively authenticated at the user-end and the manufacturer-front-end that achieving a high coding capacity of at least 22304. Notably, the use of HIS greatly shortens the time of key reading and generation (≈5 s for recording, 0.5-0.7 s for authentication). This new optical PUF labels can not only solve slow data storage and complicated authentication in optical PUF, but also impulse the development of CNC in industrial applications by reducing color uniformity requirement.

15.
Int J Biol Macromol ; 273(Pt 2): 132706, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825294

RESUMEN

Benzene, as a common volatile organic compound, represents serious risk to human health and environment even at low level concentration. There is an urgent concern on visualized, sensitive and real time detection of benzene gases. Herein, by doping Fe3+ and graphene quantum dots (GQDs), a cellulose nanocrystal (CNC) chiral nematic film was designed with dual response of photonic colors and fluorescence to benzene gas. The chiral nematic CNC/Fe/GQDs film could respond to benzene gas changes by reversible motion. Moreover, chiral nematic film also displays reversible responsive to humidity changes. The resulting CNC/Fe/GQDs chiral nematic film showed excellent response performance at benzene gas concentrations of 0-250 mg/m3. The maximal reflection wavelength film red shifted from 576 to 625 nm. Furthermore, structural color of CNC/Fe/GQDs chiral nematic film change at 44 %, 54 %, 76 %, 87 %, and 99 % relative humidity. Interestingly, due to the stability of GQDs to water molecules, CNC/Fe/GQDs chiral nematic film exhibit fluorescence response to benzene gas even in high humidity (RH = 99 %) environment. Besides, we further developed a smartphone-based response network system for quantitively determinization and signal transformation. This work provides a promising routine to realize a new benzene gas response regime and promotes the development of real-time benzene gas detection.


Asunto(s)
Benceno , Celulosa , Nanopartículas , Celulosa/química , Benceno/química , Benceno/análisis , Nanopartículas/química , Puntos Cuánticos/química , Grafito/química , Fluorescencia , Gases/análisis , Gases/química , Color , Fotones
16.
Int J Biol Macromol ; 275(Pt 2): 133252, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945707

RESUMEN

The short shelf life of Litchi is due to its rapid metabolism after being harvested. Refrigeration is not a suitable method for preserving litchi, as the browning process of litchi that has been cryogenic will accelerate when it is brought to room temperature. This study introduces an alginate-based coating as a solution to control the post-harvest metabolism of litchi. The coating achieves this by simultaneously establishing crosslink and percolation networks, both of which act as barriers. The percolation network is created using rod-like cellulose nanocrystals, which possess excellent percolation properties. This network effectively reduces moisture loss. Compared to the control group, the coated litchi exhibited a 38.1 % lower browning index and a 62.5 % lower decay rate. Additionally, the soluble solid content increased by 107.1 %. The inclusion of cellulose nanocrystals and the crosslinking of calcium ions enhanced the mechanical properties of the composite membrane. Specifically, the tensile strength and elongation at break increased by 70 % and 366 % respectively. As all the components in the coating are edible, it is environmentally friendly and safe for human consumption.


Asunto(s)
Alginatos , Celulosa , Litchi , Alginatos/química , Litchi/química , Celulosa/química , Nanopartículas/química , Resistencia a la Tracción
17.
Carbohydr Polym ; 341: 122353, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876720

RESUMEN

The use of Pickering emulsions for biocatalysis is gaining increased attention. However, the extensive application is greatly limited due to the enzyme inactivation. Herein, a biocatalytic Pickering emulsion with high-performance utilizing cellulose nanocrystals immobilized lipases (CNCs-Lps) particles as stabilizer is advanced and applied for the synthesis of Vitamin E nicotinate. CNCs-Lps display high activity and reusability due to the construction of biocatalytic microreactor in the O/W emulsion system. The yield of vitamin E nicotinate ester reached up to 83 %. More importantly, the CNCs-Lps can be reused due to the similar principles to microreactors in Pickering emulsions. Reusability test showed that the CNCs-Lps could be recovered from the emulsion system by centrifugation and the yield of vitamin E nicotinate retains 78 % of initial value after five cycles, demonstrating overwhelming advantage than the fair counterpart with free lipases.


Asunto(s)
Biocatálisis , Celulosa , Emulsiones , Enzimas Inmovilizadas , Lipasa , Nanopartículas , Celulosa/química , Emulsiones/química , Lipasa/química , Lipasa/metabolismo , Nanopartículas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Vitamina E/química
18.
Chemosphere ; 361: 142530, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851511

RESUMEN

Chiroptical sensing with real-time colorimetrical detection has been emerged as quantifiable properties, enantioselective responsiveness, and optical manipulation in environmental monitoring, food safety and other trace identification fields. However, the sensitivity of chiroptical sensing materials remains an immense challenge. Here, we report a dynamically crosslinking strategy to facilitate highly sensitive chiroptical sensing material. Chiral nematic cellulose nanocrystals (CNC) were co-assembled with amino acid by a two-step esterification, of which a precisely tunable helical pitch, a unique spiral conformation with hierarchical and numerous active sites in sensing performance could be trigged by dynamic covalent bond on amines. Such a CNC/amino acid chiral optics features an ultra-trace amount of 0.08 mg/m3 and a high sensitivity of 60 nm/(mg/m3) for formaldehyde gas at a molecule level detection, which is due to the three synergistic adsorption enhancement of dynamic covalent bonded interaction, hydrogen bonded interaction and van der Waals interaction. Meanwhile, an enhancement hierarchical adsorption of CNC/amino acid chiral materials can be readily representative to the precise helical pitch and colorimetrical switch for sensitive visualization reorganization.


Asunto(s)
Celulosa , Nanopartículas , Compuestos Orgánicos Volátiles , Celulosa/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Nanopartículas/química , Monitoreo del Ambiente/métodos , Aminoácidos/análisis , Aminoácidos/química , Colorimetría/métodos , Estereoisomerismo , Formaldehído/química , Formaldehído/análisis , Adsorción
19.
J Nanobiotechnology ; 22(1): 323, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849931

RESUMEN

BACKGROUND: The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS: The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION: Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.


Asunto(s)
Quitosano , Emulsiones , Hidrogeles , Nanopartículas del Metal , Quercetina , Plata , Piel , Cicatrización de Heridas , Quercetina/química , Quercetina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Animales , Emulsiones/química , Ratones , Humanos , Piel/efectos de los fármacos , Piel/lesiones , Nanopartículas del Metal/química , Plata/química , Hidrogeles/química , Materiales Biocompatibles/química , Vendajes , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Celulosa/química , Masculino , Regeneración/efectos de los fármacos , Células HaCaT , Oxidación-Reducción , Metilgalactósidos
20.
Carbohydr Polym ; 340: 122315, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858028

RESUMEN

Utilizing advanced multiple channels for information encryption offers a powerful strategy to achieve high-capacity and highly secure data protection. Cellulose nanocrystals (CNCs) offer a sustainable resource for developing information protection materials. In this study, we present an approach that is easy to implement and adapt for the covalent attachment of various fluorescence molecules onto the surface of CNCs using the Mannich reaction in aqueous-based medium. Through the use of the Mannich reaction-based surface modification technique, we successfully achieved multi-color fluorescence in the resulting CNCs. The resulting CNC derivatives were thoroughly characterized by two dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D HSQC NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron (XPS) spectroscopy. Notably, the optical properties of CNCs were well maintained after modification, resulting in films exhibiting blue and red structural colors. This enables the engineering of highly programmable and securely encoded anti-counterfeit labels. Moreover, subsequent coating of the modified CNCs with MXene yielded a highly secure encrypted matrix, offering advanced security and encryption capabilities under ultraviolet, visible, and near-infrared wavelengths. This CNC surface-modification enables the development of multimodal security labels with potential applications across various practical scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA