Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Environ Sci Pollut Res Int ; 31(31): 44308-44317, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951395

RESUMEN

Avobenzone (AVO) is a sunscreen with high global production and is constantly released into the environment. Incorporating sewage biosolids for fertilization purposes, the leaching from cultivated soils, and the use of wastewater for irrigation explain its presence in the soil. There is a lack of information about the impact of this sunscreen on plants. In the present study, the ecotoxicity of AVO was tested at concentrations 1, 10, 100, and 1,000 ng/L. All concentrations caused a reduction in root growth of Allium cepa, Cucumis sativus, and Lycopersicum esculentum seeds, as well as a mitodepressive effect, changes in the mitotic spindle and a reduction in root growth of A. cepa bulbs. The cell cycle was disturbed because AVO disarmed the enzymatic defense system of root meristems, leading to an accumulation of hydroxyl radicals and superoxides, besides lipid peroxidation in cells. Therefore, AVO shows a high potential to cause damage to plants and can negatively affect agricultural production and the growth of non-cultivated plants.


Asunto(s)
Protectores Solares , Protectores Solares/toxicidad , Propiofenonas/toxicidad , Cebollas/efectos de los fármacos , Cucumis sativus/efectos de los fármacos
2.
Environ Sci Pollut Res Int ; 31(33): 45834-45846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38972946

RESUMEN

Propylparaben (PrP) and dichloropropylparaben (diClPrP) are found in soil worldwide, mainly due to the incorporation of urban sludge in crop soils and the use of non-raw wastewater for irrigation. Studies on the adverse effects of PrP on plants are incipient and not found for diClPrP. PrP and diClPrP were evaluated at concentrations 4, 40, and 400 µg/L for their phytotoxic potential to seeds of Allium cepa (onion), Cucumis sativus (cucumber), Lycopersicum sculentum (tomato), and Lactuca sativa (lettuce), and cytotoxic, genotoxic potential, and for generating oxygen-reactive substances in root meristems of A. cepa bulbs. PrP and diClPrP caused a significant reduction in seed root elongation in all four species. In A. cepa bulb roots, PrP and diClPrP resulted in a high prophase index; in addition, PrP at 400 µg/L and diClPrP at the three concentrations significantly decreased cell proliferation and caused alterations in a significant number of cells. Furthermore, diClPrP concentrations induced the development of hooked roots in onion bulbs. The two chemical compounds caused significant changes in the modulation of catalase, ascorbate peroxidase, and guaiacol peroxidase, disarming the root meristems against hydroxyl radicals and superoxides. Therefore, PrP and diClPrP were phytotoxic and cytogenotoxic to the species tested, proving dangerous to plants.


Asunto(s)
Cebollas , Parabenos , Parabenos/toxicidad , Cebollas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Lactuca/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Cucumis sativus/efectos de los fármacos
3.
Microorganisms ; 12(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674634

RESUMEN

Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker, encodes an Escherichia coli M23 peptidase EnvC homolog. EnvC is a LytM factor essential for cleaving the septal peptidoglycan, thereby facilitating the separation of daughter cells. In this study, the investigation focused on EnvC contribution to the virulence and cell separation of X. citri. It was observed that disruption of the X. citri envC gene (ΔenvC) led to a reduction in virulence. Upon inoculation into leaves of Rangpur lime (Citrus limonia Osbeck), the X. citri ΔenvC exhibited a delayed onset of citrus canker symptoms compared with the wild-type X. citri. Mutant complementation restored the wild-type phenotype. Sub-cellular localization confirmed that X. citri EnvC is a periplasmic protein. Moreover, the X. citri ΔenvC mutant exhibited elongated cells, indicating a defect in cell division. These findings support the role of EnvC in the regulation of cell wall organization, cell division, and they clarify the role of this peptidase in X. citri virulence.

4.
J Nanobiotechnology ; 22(1): 78, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414055

RESUMEN

BACKGROUND: Bacterial biosynthesis of fluorescent nanoparticles or quantum dots (QDs) has emerged as a unique mechanism for heavy metal tolerance. However, the physiological pathways governing the removal of QDs from bacterial cells remains elusive. This study investigates the role of minicells, previously identified as a means of eliminating damaged proteins and enhancing bacterial resistance to stress. Building on our prior work, which unveiled the formation of minicells during cadmium QDs biosynthesis in Escherichia coli, we hypothesize that minicells serve as a mechanism for the accumulation and detoxification of QDs in bacterial cells. RESULTS: Intracellular biosynthesis of CdS QDs was performed in E. coli mutants ΔminC and ΔminCDE, known for their minicell-producing capabilities. Fluorescence microscopy analysis demonstrated that the generated minicells exhibited fluorescence emission, indicative of QD loading. Transmission electron microscopy (TEM) confirmed the presence of nanoparticles in minicells, while energy dispersive spectroscopy (EDS) revealed the coexistence of cadmium and sulfur. Cadmium quantification through flame atomic absorption spectrometry (FAAS) demonstrated that minicells accumulated a higher cadmium content compared to rod cells. Moreover, fluorescence intensity analysis suggested that minicells accumulated a greater quantity of fluorescent nanoparticles, underscoring their efficacy in QD removal. Biosynthesis dynamics in minicell-producing strains indicated that biosynthesized QDs maintained high fluorescence intensity even during prolonged biosynthesis times, suggesting continuous QD clearance in minicells. CONCLUSIONS: These findings support a model wherein E. coli utilizes minicells for the accumulation and removal of nanoparticles, highlighting their physiological role in eliminating harmful elements and maintaining cellular fitness. Additionally, this biosynthesis system presents an opportunity for generating minicell-coated nanoparticles with enhanced biocompatibility for diverse applications.


Asunto(s)
Compuestos de Cadmio , Nanopartículas , Puntos Cuánticos , Sulfuros , Escherichia coli/metabolismo , Cadmio , Nanopartículas/química , Puntos Cuánticos/química , Colorantes/metabolismo
5.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334041

RESUMEN

Cells have evolved intricate mechanisms for dividing their contents in the most symmetric way during mitosis. However, a small proportion of cell divisions results in asymmetric segregation of cellular components, which leads to differences in the characteristics of daughter cells. Although the classical function of asymmetric cell division (ACD) in the regulation of pluripotency is the generation of one differentiated daughter cell and one self-renewing stem cell, recent evidence suggests that ACD plays a role in other physiological processes. In cancer, tumor heterogeneity can result from the asymmetric segregation of genetic material and other cellular components, resulting in cell-to-cell differences in fitness and response to therapy. Defining the contribution of ACD in generating differences in key features relevant to cancer biology is crucial to advancing our understanding of the causes of tumor heterogeneity and developing strategies to mitigate or counteract it. In this Review, we delve into the occurrence of asymmetric mitosis in cancer cells and consider how ACD contributes to the variability of several phenotypes. By synthesizing the current literature, we explore the molecular mechanisms underlying ACD, the implications of phenotypic heterogeneity in cancer, and the complex interplay between these two phenomena.


Asunto(s)
División Celular Asimétrica , Neoplasias , Humanos , Mitosis/genética , Neoplasias/genética , Células Madre , Diferenciación Celular
6.
Ann Bot ; 132(7): 1233-1248, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37818893

RESUMEN

BACKGROUND AND AIMS: Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS: Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS: Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS: Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.


Asunto(s)
Gigantismo , Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Tamaño de los Órganos/genética , Gigantismo/genética , Sitios de Carácter Cuantitativo/genética , Solanum/genética , Frutas/genética
7.
J Exp Bot ; 74(20): 6349-6368, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37157899

RESUMEN

S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Solanum lycopersicum , Reguladores del Crecimiento de las Plantas/metabolismo , Oxidorreductasas/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , S-Nitrosoglutatión/metabolismo , Ácidos Indolacéticos/metabolismo , Homeostasis , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Microbiol Spectr ; : e0325122, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36728437

RESUMEN

Tritrichomonas foetus and Trichomonas vaginalis are extracellular flagellated parasites that inhabit animals and humans, respectively. Cell division is a crucial process in most living organisms that leads to the formation of 2 daughter cells from a single mother cell. It has been assumed that T. vaginalis and T. foetus modes of reproduction are exclusively by binary fission. However, here, we showed that multinuclearity is a phenomenon regularly observed in different T. foetus and T. vaginalis strains in standard culture conditions. Additionally, we revealed that nutritional depletion or nutritional deprivation led to different dormant phenotypes. Although multinucleated T. foetus are mostly observed during nutritional depletion, numerous cells with 1 larger nucleus have been observed under nutritional deprivation conditions. In both cases, when the standard culture media conditions are restored, the cytoplasm of these multinucleated cells separates, and numerous parasites are generated in a short period of time by the fission multiple. We also revealed that DNA endoreplication occurs both in large and multiple nuclei of parasites under nutritional deprivation and depletion conditions, suggesting an important function in stress nutritional situations. These results provide valuable data about the cell division process of these extracellular parasites. IMPORTANCE Nowadays, it's known that T. foetus and T. vaginalis generate daughter cells by binary fission. Here, we report that both parasites are also capable of dividing by multiple fission under stress conditions. We also demonstrated, for the first time, that T. foetus can increase its DNA content per parasite without concluding the cytokinesis process (endoreplication) under stress conditions, which represents an efficient strategy for subsequent fast multiplication when the context becomes favorable. Additionally, we revealed the existence of novel dormant forms of resistance (multinucleated or mononucleated polyploid parasites), different than the previously described pseudocysts, that are formed under stress conditions. Thus, it is necessary to evaluate the role of these structures in the parasites' transmission in the future.

9.
Plant Cell Rep ; 42(3): 649-653, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36680640

RESUMEN

KEY MESSAGE: We highlight the newly emerged regulatory role of a mitotic kinase AUR1, its activator, and its microtubule-associated proteins (MAPs) in infection thread formation for root nodule symbiosis.


Asunto(s)
Fabaceae , Rhizobium , Fabaceae/metabolismo , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/metabolismo , Verduras , Simbiosis
10.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12855, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1505881

RESUMEN

Cell division cycle 42 (CDC42) regulates T helper (Th) cell differentiation and is related to psychological disorders. This study aimed to assess the correlation between blood CDC42 and Th cells, and their association with mental issues in stroke patients. Peripheral blood samples were obtained from 264 stroke patients and 50 controls. Then, serum CDC42 was measured by enzyme-linked immunosorbent assay, and Th1, Th2, and Th17 cells were detected by flow cytometry. Hospital Anxiety and Depression Scale (HADS) and Mini Mental State Examination (MMSE) were applied to patients. CDC42 was decreased (P<0.001), Th1 (P=0.013) and Th17 (P<0.001) cells were elevated, while Th2 cells (P=0.108) showed no difference in stroke patients compared to controls. In addition, CDC42 was negatively associated to Th1 (P=0.013) and Th17 (P<0.001) cells in stroke patients but were not associated with Th2 cells (P=0.223). Interestingly, CDC42 was negatively associated with HADS-anxiety (P<0.001) and HADS-depression scores (P=0.034) and positively associated with MMSE score (P<0.001) in stroke patients. Lower CDC42 was associated to lower occurrence of anxiety (P=0.002), depression (P=0.001), and cognitive impairment (P=0.036) in stroke patients. Furthermore, increased Th17 cells were positively correlated with HADS-anxiety and HADS-depression scores and inversely correlated with MMSE score, which were also associated with higher occurrence of anxiety, depression, and cognitive impairment in stroke patients (all P<0.05). Blood CDC42 and Th17 cells were correlated, and both of them were linked to the risk of anxiety, depression, and cognitive impairment. However, the findings need further large-scale validation, and the implicated mechanism needs more investigation.

11.
mSphere ; 7(6): e0040322, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36468865

RESUMEN

Chromatin dynamics can regulate all DNA-dependent processes. Access to DNA within chromatin is orchestrated mainly by histones and their posttranslational modifications (PTMs). Like other eukaryotes, the apicomplexan parasite Toxoplasma gondii encodes four canonical histones and five histone variants. In contrast, the linker histone (H1) has never been identified in apicomplexan parasites. In other eukaryotes, histone H1 compacts the chromatin by linking the nucleosome and increasing the DNA compaction. H1 is a multifunctional protein and can be involved in different steps of DNA metabolism or associated with protein complexes related to distinct biological processes. We have identified a novel protein in T. gondii ("TgH1-like") that, although lacking the globular domain of mammalian H1, is remarkably like the H1-like proteins of bacteria and trypanosomatids. Our results demonstrate that TgH1-like is a nuclear protein associated with chromatin and other histones. Curiously, TgH1-like is also in the nucleolus and associated with ribosomal proteins, indicating a versatile function in this parasite. Although knockout of the tgh1-like gene does not affect the cell cycle, it causes endopolygeny and asynchronous division. Interestingly, mutation of posttranslationally modified amino acids results in defects in cell division like those in the Δtgh1-like mutant, showing that these sites are important for protein function. Furthermore, in the bradyzoite stage, this protein is expressed only in dividing parasites, reinforcing its importance in cell division. Indeed, the absence of TgH1-like decreases compaction of peripheral chromatin, confirming its role in the chromatin modulation in T. gondii. IMPORTANCE Histone H1, or linker histone, is an important protein that binds to the nucleosome, aiding chromatin compaction. Here, we characterize for the first time a linker histone in T. gondii, named TgH1-like. It is a small and basic protein that corresponds only to the C-terminal portion of the human H1 but is similar to histone H1 from trypanosomatids and bacteria. TgH1-like is located in the nucleus, interacts with nucleosome histones, and acts in chromatin structure and cell division. Our findings show for the first time the presence of a histone H1 protein in an apicomplexan parasite and will provide new insights into cell division and chromatin dynamics in T. gondii and related parasites.


Asunto(s)
Fenómenos Biológicos , Toxoplasma , Animales , Humanos , Histonas/genética , Nucleosomas , Toxoplasma/genética , Toxoplasma/metabolismo , Cromatina , ADN , División Celular , Ribosomas/metabolismo , Mamíferos
12.
Front Cell Dev Biol ; 10: 941870, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092739

RESUMEN

The heterotrimeric G protein family plays essential roles during a varied array of cellular events; thus, its deregulation can seriously alter signaling events and the overall state of the cell. Heterotrimeric G-proteins have three subunits (α, ß, γ) and are subdivided into four families, Gαi, Gα12/13, Gαq, and Gαs. These proteins cycle between an inactive Gα-GDP state and active Gα-GTP state, triggered canonically by the G-protein coupled receptor (GPCR) and by other accessory proteins receptors independent also known as AGS (Activators of G-protein Signaling). In this review, we summarize research data specific for the Gαi family. This family has the largest number of individual members, including Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαg, and Gαz, and constitutes the majority of G proteins α subunits expressed in a tissue or cell. Gαi was initially described by its inhibitory function on adenylyl cyclase activity, decreasing cAMP levels. Interestingly, today Gi family G-protein have been reported to be importantly involved in the immune system function. Here, we discuss the impact of Gαi on non-canonical effector proteins, such as c-Src, ERK1/2, phospholipase-C (PLC), and proteins from the Rho GTPase family members, all of them essential signaling pathways regulating a wide range of physiological processes.

13.
mBio ; 13(5): e0185922, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36069445

RESUMEN

Centrosomes are the main microtubule-organizing center of the cell. They are normally formed by two centrioles, embedded in a cloud of proteins known as pericentriolar material (PCM). The PCM ascribes centrioles with their microtubule nucleation capacity. Toxoplasma gondii, the causative agent of toxoplasmosis, divides by endodyogeny. Successful cell division is critical for pathogenesis. The centrosome, one of the microtubule organizing centers of the cell, plays central roles in orchestrating the temporal and physical coordination of major organelle segregation and daughter cell formation during endodyogeny. The Toxoplasma centrosome is constituted by multiple domains: an outer core, distal from the nucleus; a middle core; and an inner core, proximal to the nucleus. This modular organization has been proposed to underlie T. gondii's cell division plasticity. However, the role of the inner core remains undeciphered. Here, we focus on understanding the function of the inner core by finely studying the localization and role of its only known molecular marker; TgCep250L1. We show that upon conditional degradation of TgCep250L1 parasites are unable to survive. Mutants exhibit severe nuclear segregation defects. In addition, the rest of the centrosome, defined by the position of the centrioles, disconnects from the nucleus. We explore the structural defects underlying these phenotypes by ultrastructure expansion microscopy. We show that TgCep250L1's location changes with respect to other markers, and these changes encompass the formation of the mitotic spindle. Moreover, we show that in the absence of TgCep250L1, the microtubule binding protein TgEB1, fails to localize at the mitotic spindle, while unsegregated nuclei accumulate at the residual body. Overall, our data support a model in which the inner core of the T. gondii centrosome critically participates in cell division by directly impacting the formation or stability of the mitotic spindle. IMPORTANCE Toxoplasma gondii parasites cause toxoplasmosis, arguably the most widespread and prevalent parasitosis of humans and animals. During the clinically relevant stage of its life cycle, the parasites divide by endodyogeny. In this mode of division, the nucleus, containing loosely packed chromatin and a virtually intact nuclear envelope, parcels into two daughter cells generated within a common mother cell cytoplasm. The centrosome is a microtubule-organizing center critical for orchestrating the multiple simultaneously occurring events of endodyogeny. It is organized in two distinct domains: the outer and inner cores. We demonstrate here that the inner core protein TgCEP250L1 is required for replication of T. gondii. Lack of TgCEP250L1 renders parasites able to form daughter cells, while unable to segregate their nuclei. We determine that, in the absence of TgCEP250L1, the mitotic spindle, which is responsible for karyokinesis, does not assemble. Our results support a role for the inner core in nucleation or stabilization of the mitotic spindle in T. gondii.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Animales , Toxoplasma/metabolismo , Centrosoma/metabolismo , Toxoplasmosis/parasitología , Mitosis , Cromatina/metabolismo
15.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563659

RESUMEN

The development of a symbiotic nitrogen-fixing nodule in legumes involves infection and organogenesis. Infection begins when rhizobia enter a root hair through an inward structure, the infection thread (IT), which guides the bacteria towards the cortical tissue. Concurrently, organogenesis takes place by inducing cortical cell division (CCD) at the infection site. Genetic analysis showed that both events are well-coordinated; however, the dynamics connecting them remain to be elucidated. To visualize the crossroads between IT and CCD, we benefited from the fact that, in Phaseolus vulgaris nodulation, where the first division occurs in subepidermal cortical cells located underneath the infection site, we traced a Rhizobium etli strain expressing DsRed, the plant cytokinesis marker YFP-PvKNOLLE, a nuclear stain and cell wall auto-fluorescence. We found that the IT exits the root hair to penetrate an underlying subepidermal cortical (S-E) cell when it is concluding cytokinesis.


Asunto(s)
Phaseolus , Rhizobium , División Celular , Phaseolus/microbiología , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta , Raíces de Plantas/genética , Rhizobium/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética
16.
Front Plant Sci ; 13: 857745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444668

RESUMEN

The final shape and size of plant organs are determined by a network of genes that modulate cell proliferation and expansion. Among those, SCI1 (Stigma/style Cell-cycle Inhibitor 1) functions by inhibiting cell proliferation during pistil development. Alterations in SCI1 expression levels can lead to remarkable stigma/style size changes. Recently, we demonstrated that SCI1 starts to be expressed at the specification of the Nicotiana tabacum floral meristem and is expressed at all floral meristematic cells. To elucidate how SCI1 regulates cell proliferation, we screened a stigma/style cDNA library through the yeast two-hybrid (Y2H) system, using SCI1 as bait. Among the interaction partners, we identified the 14-3-3D protein of the Non-Epsilon group. The interaction between SCI1 and 14-3-3D was confirmed by pulldown and co-immunoprecipitation experiments. 14-3-3D forms homo- and heterodimers in the cytoplasm of plant cells and interacts with SCI1 in the nucleus, as demonstrated by Bimolecular Fluorescence Complementation (BiFC). Analyses of SCI1-GFP fluorescence through the cell-cycle progression revealed its presence in the nucleoli during interphase and prophase. At metaphase, SCI1-GFP fluorescence faded and was no longer detected at anaphase, reappearing at telophase. Upon treatment with the 26S proteasome inhibitor MG132, SCI1-GFP was stabilized during cell division. Site-directed mutagenesis of seven serines into alanines in the predicted 14-3-3 binding sites on the SCI1 sequence prevented its degradation during mitosis. Our results demonstrate that SCI1 degradation at the beginning of metaphase is dependent on the phosphorylation of serine residues and on the action of the 26S proteasome. We concluded that SCI1 stability/degradation is cell-cycle regulated, consistent with its role in fine-tuning cell proliferation.

17.
J Hazard Mater ; 432: 128704, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35313159

RESUMEN

Aluminium (Al), a limiting factor for crop productivity in acidic soils (pH ≤ 5.5), imposes drastic constraints for food safety in developing countries. The major mechanisms that allow plants to cope with Al involve manipulations of organic acids metabolism and DNA-checkpoints. When assumed individually both approaches have been insufficient to overcome Al toxicity. On analysing the centre of origin of most cultivated plants, we hypothesised that day-length seems to be a pivotal agent modulating Al tolerance across distinct plant species. We observed that with increasing distance from the Equator, Al tolerance decreases, suggesting a relationship with the photoperiod. We verified that long-day (LD) species are generally more Al-sensitive than short-day (SD) species, whereas genetic conversion of tomato for SD growth habit boosts Al tolerance. Reduced Al tolerance correlates with DNA-checkpoint activation under LD. Furthermore, DNA-checkpoint-related genes are under positive selection in Arabidopsis accessions from regions with shorter days, suggesting that photoperiod act as a selective barrier for Al tolerance. A diel regulation and genetic diversity affect Al tolerance, suggesting that day-length orchestrates Al tolerance. Altogether, photoperiodic control of Al tolerance might contribute to solving the historical obstacle that imposes barriers for developing countries to reach a sustainable agriculture.


Asunto(s)
Arabidopsis , Fotoperiodo , Aluminio/toxicidad , Arabidopsis/metabolismo , ADN , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo
18.
Curr Opin Plant Biol ; 65: 102115, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34742019

RESUMEN

Lateral root development is essential for the establishment of the plant root system. Lateral root initiation is a multistep process that impacts early primordium morphogenesis and is linked to the formation of a morphogenetic field of pericycle founder cells. Gradual recruitment of founder cells builds this morphogenetic field in an auxin-dependent manner. The complex process of lateral root primordium morphogenesis includes several subprocesses, which are presented in this review. The underlying cellular and molecular mechanisms of these subprocesses are examined.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Morfogénesis/genética , Raíces de Plantas
19.
mSphere, v. 7, n. 6, e00403-22, nov-dez. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4713

RESUMEN

Chromatin dynamics can regulate all DNA-dependent processes. Access to DNA within chromatin is orchestrated mainly by histones and their posttranslational modifications (PTMs). Like other eukaryotes, the apicomplexan parasite Toxoplasma gondii encodes four canonical histones and five histone variants. In contrast, the linker histone (H1) has never been identified in apicomplexan parasites. In other eukaryotes, histone H1 compacts the chromatin by linking the nucleosome and increasing the DNA compaction. H1 is a multifunctional protein and can be involved in different steps of DNA metabolism or associated with protein complexes related to distinct biological processes. We have identified a novel protein in T. gondii (“TgH1-like”) that, although lacking the globular domain of mammalian H1, is remarkably like the H1-like proteins of bacteria and trypanosomatids. Our results demonstrate that TgH1-like is a nuclear protein associated with chromatin and other histones. Curiously, TgH1-like is also in the nucleolus and associated with ribosomal proteins, indicating a versatile function in this parasite. Although knockout of the tgh1-like gene does not affect the cell cycle, it causes endopolygeny and asynchronous division. Interestingly, mutation of posttranslationally modified amino acids results in defects in cell division like those in the Δtgh1-like mutant, showing that these sites are important for protein function. Furthermore, in the bradyzoite stage, this protein is expressed only in dividing parasites, reinforcing its importance in cell division. Indeed, the absence of TgH1-like decreases compaction of peripheral chromatin, confirming its role in the chromatin modulation in T. gondii. Histone H1, or linker histone, is an important protein that binds to the nucleosome, aiding chromatin compaction. Here, we characterize for the first time a linker histone in T. gondii, named TgH1-like. It is a small and basic protein that corresponds only to the C-terminal portion of the human H1 but is similar to histone H1 from trypanosomatids and bacteria. TgH1-like is located in the nucleus, interacts with nucleosome histones, and acts in chromatin structure and cell division. Our findings show for the first time the presence of a histone H1 protein in an apicomplexan parasite and will provide new insights into cell division and chromatin dynamics in T. gondii and related parasites.

20.
Front Cell Dev Biol ; 9: 718560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917608

RESUMEN

ARHGAP21 is a member of the RhoGAP family of proteins involved in cell growth, differentiation, and adhesion. We have previously shown that the heterozygous Arhgap21 knockout mouse model (Arhgap21+/-) presents several alterations in the hematopoietic compartment, including increased frequency of hematopoietic stem and progenitor cells (HSPC) with impaired adhesion in vitro, increased mobilization to peripheral blood, and decreased engraftment after bone marrow transplantation. Although these HSPC functions strongly depend on their interactions with the components of the bone marrow (BM) niche, the role of ARHGAP21 in the marrow microenvironment has not yet been explored. In this study, we investigated the composition and function of the BM microenvironment in Arhgap21+/- mice. The BM of Arhgap21+/- mice presented a significant increase in the frequency of phenotypic osteoblastic lineage cells, with no differences in the frequencies of multipotent stromal cells or endothelial cells when compared to the BM of wild type mice. Arhgap21+/- BM cells had increased capacity of generating osteogenic colony-forming units (CFU-OB) in vitro and higher levels of osteocalcin were detected in the Arhgap21+/- BM supernatant. Increased expression of Col1a1, Ocn and decreased expression of Trap1 were observed after osteogenic differentiation of Arhgap21+/- BM cells. In addition, Arhgap21+/- mice recipients of normal BM cells showed decreased leucocyte numbers during transplantation recovery. Our data suggest participation of ARHGAP21 in the balanced composition of the BM microenvironment through the regulation of osteogenic differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA