Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.557
Filtrar
1.
FEBS J ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285617

RESUMEN

Cancer remains a significant global health concern. Breast cancer is a multifaceted and prevalent disease influenced by several factors, among which estrogen receptors (ERs) and the extracellular matrix (ECM) play pivotal roles. ERs, encompassing ERα and ERß, exert significant diversity on tumor behavior, cell signaling, invasion, and metastatic potential, thus guiding breast cancer prognosis. Understanding the multifunctional connections between ERs and ECM that mediate the dynamics of tumor microenvironment is vital for unraveling the complexity of breast cancer pathobiology and identifying novel therapeutic targets. This critical review delves into the intricate nature of ERs, emphasizing their structural isoforms and the consequential impact on breast cancer outcomes. A detailed examination of ER-mediated cell signaling pathways reveals how differential expression of ERα and ERß isoforms influence breast cancer cell behavior. The functional ERs-matrix interactions emerge as a pivotal factor in modulating epigenetic mechanisms of breast cancer cells, orchestrating changes in cellular phenotype and expression patterns of matrix modulators. Specifically, ERα isoforms are shown to regulate ECM signaling cascades, while the effects of ECM components on ERα activity highlight a bidirectional regulatory axis. The diversity of ERß isoforms is also highlighted, illustrating their distinct contribution to ECM-mediated cellular responses. This review underscores the complex interplay between ERα/ß isoforms and the ECM, shedding light onto the potential therapeutic strategies targeting these interactions to improve breast cancer management.

2.
Fish Shellfish Immunol ; 154: 109901, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276815

RESUMEN

SOCS family genes are a class of repressors in various signaling pathways of mammals involved in regulating immunity, growth, and development, but the information remains limited in teleost. The full-length cDNA sequence of the Japanese eel SOCS6 gene, named AjSOCS6, was first cloned and showed to encode 529 amino acids with a conserved SH2 structural domain and a typical structure of a C-terminal SOCS box. AjSOCS6 is evolutionarily close to that of rainbow trout and zebrafish. AjSOCS6 gene expression was observed across all tissues in Japanese eel, with the highest levels found in the intestine. In vivo studies showed that AjSOCS6 was significantly upregulated in the liver following exposure to LPS, poly I:C, and Aeromonas hydrophila infection. In vitro, stimulation with poly I:C, CpG, and A. hydrophila infection increased AjSOCS6 expression in Japanese eel liver cells. Subcellular localization revealed that AjSOCS6 was dispersed in the cytoplasm. Overexpressing AjSOCS6 significantly suppressed the expression of immune-related genes, such as c-Rel and p65 in the NF-κB pathway, IFN1, IFN2, and IFN4 in the type I IFN signaling pathway, and the downstream inflammatory factor IL-6 in Japanese eel liver cells. Conversely, knocking down AjSOCS6 in vitro in liver cells and in vivo in the liver, spleen, and kidney significantly upregulated these gene expressions. Co-transfection of AjSOCS6 with AjMyD88 into HEK293 cells significantly reduced NF-κB luciferase activities compared to AjMyD88 single-transfection groups, in a natural state and under LPS stimulation. These findings suggest that AjSOCS6 negatively regulates MyD88-dependent NF-κB and type I IFN signaling pathways, underscoring its role in the immune defense of fish against viral and bacterial infections.

3.
J Cosmet Dermatol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291439

RESUMEN

BACKGROUNDS: With the increasing demand for beauty and a healthy lifespan, studies regarding anti-skin aging have drawn much more attention than ever before. Skin cellular senescence, the primary cause of skin aging, is characterized by a cell cycle arrest in proliferating cells along with a senescence-associated secretory phenotype (SASP), which can be triggered by various internal or external stimuli. AIMS: Recent studies have made significant progress in the fields of anti-senescence and anti-aging. However, little is known about the roles and functions of natural compounds, particularly flavonoids, in skin cellular senescence studies. METHODS: In this study, using strategies including ionizing radiation (IR), senescence-associated ß galactosidase assay (SA-ß-Gal), immunofluorescence (IF), flow cytometry, PCR array, as well as in vivo experiments, we investigated the effects and roles of troxerutin (Trx), a natural flavonoid, in skin keratinocyte senescence. RESULTS: We found that Trx delays skin keratinocyte senescence induced by IR. Mechanistically, Trx protects the skin keratinocyte cells from senescence by alleviating reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and DNA damage caused by IR. In addition, Trx was also proved to relieve skin senescence and SASP secretion in vivo induced by IR stimulation. CONCLUSIONS: Altogether, our findings pointed to a new function of Trx in delaying stress-induced skin keratinocyte senescence, and should thus provide theoretical foundations for exploring novel strategies against skin aging.

4.
Biophys Rep ; 10(4): 230-240, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39281196

RESUMEN

Met1-linked ubiquitination (Met1-Ub), also known as linear ubiquitination, is a newly identified atypical type of polyubiquitination that is assembled via the N-terminal methionine (Met1) rather than an internal lysine (Lys) residue of ubiquitin. The linear ubiquitin chain assembly complex (LUBAC) composed of HOIP, HOIL-1L and SHARPIN is the sole E3 ubiquitin ligase that specifically generates Met1-linked ubiquitin chains. The physiological role of LUBAC-mediated Met1-Ub has been first described as activating NF-κB signaling through the Met1-Ub modification of NEMO. However, accumulating evidence shows that Met1-Ub is broadly involved in other cellular pathways including MAPK, Wnt/ß-Catenin, PI3K/AKT and interferon signaling, and participates in various cellular processes including angiogenesis, protein quality control and autophagy, suggesting that Met1-Ub harbors a potent signaling capacity. Here, we review the formation and cellular functions of Met1-linked ubiquitin chains, with an emphasis on the recent advances in the cellular mechanisms by which Met1-Ub controls signaling transduction.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39287674

RESUMEN

Natural toxins are toxic substances produced by living microorganisms and cause harmful effects to other creatures, but not the organisms themselves. Based on the sources, they are classified into fungal, microbial, herbal, algae, and animal biotoxins. Metals, the oldest toxicants, are not created or destroyed by human industry as elements, just concentrated in the biosphere. An antidote can counteract the toxic effects of a drug or toxin or mitigate the adverse effects of a harmful substance. The potential antidote effects of Panax ginseng in organ toxicity have been proved by many scientific research projects. Herein, we are going to gather a comprehensive mechanistic review of the antidotal effects of ginseng and its main constituents against natural toxins and metal toxicity. In this regard, a literate search has been done in PubMed/Medline, Science Direct, and Scopus from 2000 until 2024. The gathered data showed the protective impacts of this golden plant and its secondary metabolites against aflatoxin, deoxynivalenol, three-nitro propionic acid, ochratoxin A, lipopolysaccharide, nicotine, aconite, domoic acid, α-synuclein, amyloid ß, and glutamate as well as aluminum, cadmium, chrome, copper, iron, and lead. These antidotal effects occur by multi-functional mechanisms. It may be attributed to antioxidant, anti-inflammatory, and anti-apoptotic effects. Future research directions on the antidotal effects of ginseng against natural toxins and metal toxicity involve broadening the scope of studies to include a wider range of toxins and metals, exploring synergistic interactions with other natural compounds, and conducting more human clinical trials to validate the efficacy and safety of ginseng-based treatments.

6.
Genetics ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288021

RESUMEN

Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation. We investigated the role of the DTS using the Caenorhabditis elegans Raf ortholog lin-45. Truncations removing the DTS strongly enhanced lin-45(S312A), a weak gain-of-function allele equivalent to RAF1 mutations found in patients with Noonan Syndrome. We genetically defined three elements of the LIN-45 DTS, which we termed the active site binding sequence (ASBS), the KTP motif, and the aromatic cluster. In the context of lin-45(S312A), mutation of each of these elements enhanced activity. We used AlphaFold to predict DTS protein interactions for LIN-45, fly Raf, and human BRAF, within the activated heterotetramer complex. We propose distinct functions for the LIN-45 DTS elements: i) the ASBS binds the kinase active site as an inhibitor, ii) phosphorylation of the KTP motif modulates DTS-kinase domain interaction, and iii) the aromatic cluster anchors the DTS in an inhibitory conformation. Human RASopathy-associated variants in BRAF affect residues of the DTS, consistent with these predictions. This work establishes that the Raf/LIN-45 DTS negatively regulates signaling in C. elegans and provides a model for its function in other Raf proteins.

7.
FASEB J ; 38(17): e70030, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39221499

RESUMEN

Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.


Asunto(s)
Citidina Difosfato Colina , Enfermedades Neuroinflamatorias , Citidina Difosfato Colina/uso terapéutico , Citidina Difosfato Colina/farmacología , Humanos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Animales , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Nootrópicos/uso terapéutico , Nootrópicos/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Relevancia Clínica
9.
PeerJ ; 12: e17797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221276

RESUMEN

Numerous aspects of cellular signaling are regulated by the kinome-the network of over 500 protein kinases that guides and modulates information transfer throughout the cell. The key role played by both individual kinases and assemblies of kinases organized into functional subnetworks leads to kinome dysregulation driving many diseases, particularly cancer. In the case of pancreatic ductal adenocarcinoma (PDAC), a variety of kinases and associated signaling pathways have been identified for their key role in the establishment of disease as well as its progression. However, the identification of additional relevant therapeutic targets has been slow and is further confounded by interactions between the tumor and the surrounding tumor microenvironment. In this work, we attempt to link the state of the human kinome, or kinotype, with cell viability in treated, patient-derived PDAC tumor and cancer-associated fibroblast cell lines. We applied classification models to independent kinome perturbation and kinase inhibitor cell screen data, and found that the inferred kinotype of a cell has a significant and predictive relationship with cell viability. We further find that models are able to identify a set of kinases whose behavior in response to perturbation drive the majority of viability responses in these cell lines, including the understudied kinases CSNK2A1/3, CAMKK2, and PIP4K2C. We next utilized these models to predict the response of new, clinical kinase inhibitors that were not present in the initial dataset for model devlopment and conducted a validation screen that confirmed the accuracy of the models. These results suggest that characterizing the perturbed state of the human protein kinome provides significant opportunity for better understanding of signaling behavior and downstream cell phenotypes, as well as providing insight into the broader design of potential therapeutic strategies for PDAC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Supervivencia Celular , Neoplasias Pancreáticas , Proteínas Quinasas , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/enzimología , Supervivencia Celular/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/enzimología , Línea Celular Tumoral , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/enzimología , Proteínas Quinasas/metabolismo , Transducción de Señal , Microambiente Tumoral , Inhibidores de Proteínas Quinasas/farmacología
10.
Front Cell Dev Biol ; 12: 1453901, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252788

RESUMEN

Specific protein 1 (Sp1) is pivotal in sustaining baseline transcription as well as modulating cell signaling pathways and transcription factors activity. Through interactions with various proteins, especially transcription factors, Sp1 controls the expression of target genes, influencing numerous biological processes. Numerous studies have confirmed Sp1's significant regulatory role in the pathogenesis of cardiovascular disorders. Post-translational modifications (PTMs) of Sp1, such as phosphorylation, ubiquitination, acetylation, glycosylation, SUMOylation, and S-sulfhydration, can enhance or modify its transcriptional activity and DNA-binding stability. These modifications also regulate Sp1 expression across different cell types. Sp1 is crucial in regulating non-coding gene expression and the activity of proteins in response to pathophysiological stimuli. Understanding Sp1 PTMs advances our knowledge of cell signaling pathways in controlling Sp1 stability during cardiovascular disease onset and progression. It also aids in identifying novel pharmaceutical targets and biomarkers essential for preventing and managing cardiovascular diseases.

11.
Front Immunol ; 15: 1412513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253084

RESUMEN

Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αß T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αß heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.


Asunto(s)
Antígenos CD8 , Linfocitos T CD8-positivos , Inmunomodulación , Humanos , Antígenos CD8/metabolismo , Antígenos CD8/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Transducción de Señal/inmunología , Relación Estructura-Actividad , Inmunoterapia/métodos
12.
Curr Genet ; 70(1): 17, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276214

RESUMEN

Two-component systems (TCSs) are diverse cell signaling pathways that play a significant role in coping with a wide range of environmental cues in both prokaryotic and eukaryotic organisms. These transduction circuitries are primarily governed by histidine kinases (HKs), which act as sensing proteins of a broad variety of stressors. To date, nineteen HK groups have been previously described in the fungal kingdom. However, the structure and distribution of these prominent sensing proteins were hitherto investigated in a limited number of fungal species. In this study, we took advantage of recent genomic resources in fungi to refine the fungal HK classification by deciphering the structural diversity and phylogenetic distribution of HKs across a large number of fungal clades. To this end, we browsed the genome of 91 species representative of different fungal clades, which yielded 726 predicted HK sequences. A domain organization analysis, coupled with a robust phylogenomic approach, led to an improved categorization of fungal HKs. While most of the compiled sequences were categorized into previously described fungal HK groups, some new groups were also defined. Overall, this study provides an improved overview of the structure, distribution, and evolution of HKs in the fungal kingdom.


Asunto(s)
Hongos , Histidina Quinasa , Filogenia , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Histidina Quinasa/química , Hongos/genética , Hongos/enzimología , Hongos/clasificación , Genoma Fúngico , Transducción de Señal , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Evolución Molecular , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química
13.
Biochem Pharmacol ; 229: 116524, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251142

RESUMEN

Gut microbiota dysbiosis is linked to vascular wall disease, but the mechanisms by which gut microbiota cross-talk with the host vascular cells remain largely unknown. Shikimic acid (SA) is a biochemical intermediate synthesized in plants and microorganisms, but not mammals. Surprisingly, recent metabolomic profiling data demonstrate that SA is detectable in human and murine blood. In this study, analyzing data from germ-free rats, we provide evidence in support of SA as a bona fide gut microbiota-derived metabolite, emphasizing its biological relevance. Since vascular cells are the first cells exposed to circulating metabolites, in this study, we examined, for the first time, the effects and potential underlying molecular mechanisms of SA on vascular smooth muscle cell (VSMC) proliferation and migration, which play a key role in occlusive vascular diseases, such as post-angioplasty restenosis and atherosclerosis. We found that SA inhibits the proliferation and migration of human coronary artery SMCs. At the molecular level, unexpectedly, we found that SA activates, rather than inhibits, multiple pro-mitogenic signaling pathways in VSMCs, such as ERK1/2, AKT, and mTOR/p70S6K. Conversely, we found that SA activates the anti-proliferative AMP-activated protein kinase (AMPK) in VSMCs, a key cellular energy sensor and regulator. However, loss-of-function experiments demonstrate that AMPK does not mediate the inhibitory effects of SA on VSMC proliferation. In conclusion, these studies demonstrate that a microbiota-derived metabolite, SA, inhibits VSMC proliferation and migration in vitro and prompt further evaluation of the possible underlying molecular mechanisms and the potential protective role in VSMC-related vascular wall disease in vivo.

14.
bioRxiv ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39253415

RESUMEN

Acute myeloid leukemia (AML) is a malignancy of immature myeloid blast cells with stem-like and chemoresistant cells being retained in the bone marrow through CXCL12-CXCR4 signaling. Current CXCR4 inhibitors mobilize AML cells into the bloodstream where they become more chemosensitive have failed to improve patient survival, likely reflecting persistent receptor localization on target cells. Here we characterize the signaling properties of CXCL12-locked dimer (CXCL12-LD), a bioengineered variant of the dimeric CXCL12 structure. CXCL12-LD binding resulted in lower levels of G protein, ß-arrestin, and intracellular calcium mobilization, consistent with the locked dimer being a partial agonist of CXCR4. Further, CXCL12-LD failed to induce chemotaxis in AML cells. Despite these partial agonist properties, CXCL12-LD increased CXCR4 internalization compared to wildtype and locked-monomer forms of CXCL12. Analysis of a previously published AML transcriptomic data showed CXCR4 positive AML cells co-express genes involved in chemoresistance and maintenance of a blast-like state. The CXCL12-LD partial agonist effectively mobilized stem cells into the bloodstream in mice suggesting a potential role for their use in targeting CXCR4. Together, our results suggest that enhanced internalization by CXCL12-LD partial agonist signaling can avoid pharmacodynamic tolerance and may identify new avenues to better target GPCRs.

15.
Int J Radiat Biol ; : 1-7, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249987

RESUMEN

PURPOSE: To evaluate the effects of 1800 MHz continuous wave (CW) and global system for mobile communications (GSM) modulated radiofrequency electromagnetic field (RFEMF) exposures on signal transduction (ST) protein and cytokine expression in differentiated human-derived monocytic THP-1 cells. MATERIALS AND METHODS: THP-1 cells were differentiated into adherent macrophage-like cells using phorbol 12-myristate 13-acetate (PMA). Following differentiation, cells were exposed to 1800 MHz CW or GSM modulated RFEMF for 0.5, 4, or 24 h at a specific absorption rate (SAR) of 0 (sham) or 2.0 W/kg. Concurrent positive controls (lipopolysaccharide for cytokines; anisomycin for ST proteins) and negative controls were included in each experiment. The expression levels of cytokines (GM-CSF, IFN-γ, IL-1ß, IL-6, IL-10, TNF-α) from culture media and phosphorylated and total ST proteins (CREB, JNK, NF-κB, p38, ERK1/2, Akt, p70S6k, STAT3, STAT5) from cell lysates were assessed using Milliplex magnetic bead array panels. RESULTS: No consistent effect of RFEMF exposure was observed in differentiated THP-1 cells. A statistically significant effect of overall exposure condition was observed for IL-6 with GSM modulation (P = 0.042), but no difference between RFEMF and sham for any exposure condition remained following adjustment for multiple comparisons (P ≥ 0.128). No statistically significant effect of exposure condition was detected for any other cytokine evaluated with either of the RFEMF modulations (P ≥ 0.078). There were no statistically significant changes in expression levels for any of the ST proteins under any studied exposure condition (P ≥ 0.320). CONCLUSIONS: In this study, no evidence of changes were observed in differentiated human derived THP-1 cells following exposure of up to 24 h to 1800 MHz RFEMF at SARs of 0 and 2.0 W/kg on the expression of ST proteins or cytokines.

16.
Future Sci OA ; 10(1): 2387961, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39248050

RESUMEN

Macrophages are integral part of the body's defense against pathogens and serve as vital regulators of inflammation. Adaptor molecules, featuring diverse domains, intricately orchestrate the recruitment and transmission of inflammatory responses through signaling cascades. Key domains involved in macrophage polarization include Toll-like receptors (TLRs), Src Homology2 (SH2) and other small domains, alongside receptor tyrosine kinases, crucial for pathway activation. This review aims to elucidate the enigmatic role of macrophage adaptor molecules in modulating macrophage activation, emphasizing their diverse roles and potential therapeutic and investigative avenues for further exploration.


In our manuscript, we explore the vital role of adaptor proteins regarding ways, our immune cells, specifically macrophages, detect and respond to threats. These proteins act as crucial messengers, helping macrophages recognize harmful invaders and initiate the body's defense mechanisms. Understanding this process not only sheds light on how our immune system works but also holds promise for developing new therapies to combat infections and inflammatory diseases. Our findings offer insight into the intricate world of immune response, potentially paving the way for improved treatments for a range of health conditions.

18.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39201539

RESUMEN

Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.


Asunto(s)
Neoplasias de la Mama , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Metilación , Epigénesis Genética , Animales , Regulación Neoplásica de la Expresión Génica
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167487, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39216649

RESUMEN

Myopathy leads to skeletal and cardiac muscle degeneration which is a major cause of physical disability and heart failure. Despite the therapeutic advancement the prevalence of particularly cardiac diseases is rising at an alarming rate and novel therapeutic targets are required. Nicotinamide riboside kinase-2 (NRK-2 or NMRK2) is a muscle-specific ß1-integrin binding protein abundantly expressed in the skeletal muscle while only a trace amount is detected in the healthy cardiac muscle. The level in cardiac tissue is profoundly upregulated under pathogenic conditions such as ischemia and hypertension. NRK-2 was initially identified to regulate myoblast differentiation and to enhance the levels of NAD+, an important coenzyme that potentiates cellular energy production and stress resilience. Recent advancement has shown that NRK-2 critically regulates numerous cellular and molecular processes under pathogenic conditions to modulate the disease severity. Therefore, given its restricted expression in the cardiac and skeletal muscle, NRK-2 may serve as a unique therapeutic target. In this review, we provided a comprehensive overview of the diverse roles of NRK-2 played in different cardiac and muscular diseases and discussed the underlying molecular mechanisms in detail. Moreover, this review precisely examined how NRK-2 regulates metabolism in cardiac muscle, and how dysfunctional NRK-2 is associated with energetic deficit and impaired muscle function, manifesting various cardiac and skeletal muscle disease conditions.


Asunto(s)
Músculo Esquelético , Fosfotransferasas (Aceptor de Grupo Alcohol) , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Miocardio/metabolismo , Miocardio/patología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Musculares/genética , Cardiopatías/metabolismo , Cardiopatías/patología
20.
Dev Biol ; 516: 183-195, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39173814

RESUMEN

Fibroblast Growth Factors and their receptors (FGFRs) comprise a cell signaling module that can stimulate signaling by Ras and the kinases Raf, MEK, and ERK to regulate animal development and homeostatic functions. In Caenorhabditis elegans, the sole FGFR ortholog EGL-15 acts with the GRB2 ortholog SEM-5 to promote chemoattraction and migration by the sex myoblasts (SMs) and fluid homeostasis by the hypodermis (Hyp7). Cell-specific differences in EGL-15 signaling were suggested by the phenotypes caused by egl-15(n1457), an allele that removes a region of its C-terminal domain (CTD) known to bind SEM-5. To determine how mutations altered EGL-15 activity in the SMs and Hyp7, we used the kinase reporter ERK-KTR to measure activation of the ERK ortholog MPK-1. Consequences of egl-15(n1457) were cell-specific, resulting in loss of MPK-1 activity in the SMs and elevated activity in Hyp7. Previous studies of Hyp7 showed that loss of the CLR-1 phosphatase causes a fluid homeostasis defect termed "Clear" that is suppressed by reduction of EGL-15 signaling, a phenotype termed "Suppressor of Clear" (Soc). To identify mechanisms that permit EGL-15 signaling in Hyp7, we conducted a genetic screen for Soc mutants in the clr-1; egl-15(n1457) genotype. We report the identification of SOC-3, a protein with putative SEM-5-binding motifs and PH and PTB domains similar to DOK and IRS proteins. In combination with the egl-15(n1457) mutation, loss of either soc-3, the GAB1 ortholog soc-1, or the SHP2 ortholog ptp-2, reduced MPK-1 activation. We generated alleles of soc-3 to test the requirement for the SEM-5-binding motifs, finding that residue Tyr356 is required for function. We propose that EGL-15-mediated SM chemoattraction relies solely on the direct interaction between SEM-5 and the EGL-15 CTD. In Hyp7, EGL-15 signaling uses two mechanisms: the direct SEM-5 binding mechanism; and an alternative, CTD-independent mechanism involving SOC-3, SOC-1, and PTP-2. This work demonstrates that FGF signaling uses distinct, tissue-specific mechanisms in development, and identifies SOC-3 as a potential adaptor that facilitates Ras pathway activation by FGFR.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Transducción de Señal/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Mutación/genética , Proteína Quinasa 1 Activada por Mitógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA