Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.568
Filtrar
1.
Exp Cell Res ; 442(2): 114232, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222868

RESUMEN

α-Actinin-4 (ACTN4) expression levels are correlated with the invasive and metastatic potential of cancer cells; however, the underlying mechanism remains unclear. Here, we identified ACTN4-localized ruffle-edge lamellipodia using live-cell imaging and correlative light and electron microscopy (CLEM). BSC-1 cells expressing EGFP-ACTN4 showed that ACTN4 was most abundant in the leading edges of lamellipodia, although it was also present in stress fibers and focal adhesions. ACTN4 localization in lamellipodia was markedly diminished by phosphoinositide 3-kinase inhibition, whereas its localization in stress fibers and focal adhesions remained. Furthermore, overexpression of ACTN4, but not ACTN1, promoted lamellipodial formation. Live-cell analysis demonstrated that ACTN4-enriched lamellipodia are highly dynamic and associated with cell migration. CLEM revealed that ACTN4-enriched lamellipodia exhibit a characteristic morphology of multilayered ruffle-edges that differs from canonical flat lamellipodia. Similar ruffle-edge lamellipodia were observed in A549 and MDA-MB-231 invasive cancer cells. ACTN4 knockdown suppressed the formation of ruffle-edge lamellipodia and cell migration during wound healing in A549 monolayer cultures. Additionally, membrane-type 1 matrix metalloproteinase was observed in the membrane ruffles, suggesting that ruffle-edge lamellipodia have the ability to degrade the extracellular matrix and may contribute to active cell migration/invasion in certain cancer cell types.

2.
Bull Math Biol ; 86(10): 126, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269511

RESUMEN

During embryonic development of the retina of the eye, astrocytes, a type of glial cell, migrate over the retinal surface and form a dynamic mesh. This mesh then serves as scaffolding for blood vessels to form the retinal vasculature network that supplies oxygen and nutrients to the inner portion of the retina. Astrocyte spreading proceeds in a radially symmetric manner over the retinal surface. Additionally, astrocytes mature from astrocyte precursor cells (APCs) to immature perinatal astrocytes (IPAs) during this embryonic stage. We extend a previously-developed continuum model that describes tension-driven migration and oxygen and growth factor influenced proliferation and differentiation. Comparing numerical simulations to experimental data, we identify model equation components that can be removed via model reduction using approximate Bayesian computation (ABC). Our results verify experimental studies indicating that the choroid oxygen supply plays a negligible role in promoting differentiation of APCs into IPAs and in promoting IPA proliferation, and the hyaloid artery oxygen supply and APC apoptosis play negligible roles in astrocyte spreading and differentiation.


Asunto(s)
Astrocitos , Teorema de Bayes , Diferenciación Celular , Movimiento Celular , Simulación por Computador , Conceptos Matemáticos , Modelos Biológicos , Retina , Astrocitos/citología , Astrocitos/fisiología , Movimiento Celular/fisiología , Animales , Diferenciación Celular/fisiología , Retina/citología , Retina/embriología , Proliferación Celular/fisiología , Oxígeno/metabolismo , Ratones
3.
J Clin Invest ; 134(17)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39225097

RESUMEN

The ubiquitously expressed small GTPase Ras-related protein 1B (RAP1B) acts as a molecular switch that regulates cell signaling, cytoskeletal remodeling, and cell trafficking and activates integrins in platelets and lymphocytes. The residue G12 in the P-loop is required for the RAP1B-GTPase conformational switch. Heterozygous germline RAP1B variants have been described in patients with syndromic thrombocytopenia. However, the causality and pathophysiological impact remained unexplored. We report a boy with neonatal thrombocytopenia, combined immunodeficiency, neutropenia, and monocytopenia caused by a heterozygous de novo single nucleotide substitution, c.35G>A (p.G12E) in RAP1B. We demonstrate that G12E and the previously described G12V and G60R were gain-of-function variants that increased RAP1B activation, talin recruitment, and integrin activation, thereby modifying late responses such as platelet activation, T cell proliferation, and migration. We show that in our patient, G12E was a somatic variant whose allele frequency decreased over time in the peripheral immune compartment, but remained stable in bone marrow cells, suggesting a differential effect in distinct cell populations. Allogeneic hematopoietic stem cell transplantation fully restored the patient's hemato-immunological phenotype. Our findings define monoallelic RAP1B gain-of-function variants as a cause for constitutive immunodeficiency and thrombocytopenia. The phenotypic spectrum ranged from isolated hematological manifestations in our patient with somatic mosaicism to complex syndromic features in patients with reported germline RAP1B variants.


Asunto(s)
Mutación con Ganancia de Función , Trombocitopenia , Proteínas de Unión al GTP rap , Humanos , Masculino , Sustitución de Aminoácidos , Trasplante de Células Madre Hematopoyéticas , Síndromes de Inmunodeficiencia/genética , Mutación Missense , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Trombocitopenia/genética , Trombocitopenia/patología , Recién Nacido , Lactante , Preescolar , Niño
4.
Front Oncol ; 14: 1223478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290247

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2022.905871.].

5.
Int Immunopharmacol ; 142(Pt B): 113170, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288626

RESUMEN

Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is involved in tumorigenesis and tumor progression. However, it remains unclear whether activin A can affect the migration of lung adenocarcinoma (LUAD) cells. In this study, the results of differentially expressed genes (DEGs) identification revealed that lung adenocarcinoma tissues exhibited lower expression of activin ßA mRNA, but higher expression of epidermal growth factor (EGF) and MMP9 mRNA compared to nontumor tissues. Moreover, we found that activin A inhibited human LUAD A549 cell proliferation promoted by EGF. Additionally, EGF induced A549 cell migration in microfluidic device, while activin A attenuated EGF actions. Simultaneously, EGF increased the levels of migration-related proteins, but activin A played the opposite role. Furthermore, the study revealed that EGF upregulated the ratio of p-ERK/ERK in A549 cells, which was weakened by activin A, and A549 cell migration regulated by activin A was not related to calcium signaling. In addition, the inhibitory effect of activin A on EGF-induced A549 cell migration was attenuated by the ERK inhibitor FR180204. These findings demonstrate that activin A effectively hinders the migration of A549 cells induced by EGF through ERK1/2 signaling, suggesting that targeting activin A may hold promise in the treatment of EGF-dependent LUAD growth and metastasis.

6.
Poult Sci ; 103(12): 104293, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39288719

RESUMEN

Citrus pectin (CP) is a dietary fiber used in animal nutrition with anti-inflammatory properties. CP downregulates chicken immunoregulatory monocytes' functions, like chemotaxis and phagocytosis, in vitro. The molecular underlying background is still unknown. This study investigated the activity of CP on chicken peripheral blood mononuclear cells (PBMC) proteome. An overall number of 1503 proteins were identified and quantified. The supervised sparse variant partial least squares-discriminant analysis (sPLS-DA) for paired data highlighted 373 discriminant proteins between CP-treated and the control group, of which 50 proteins with the highest abundance in CP and 137 in the control group were selected for Gene Ontology (GO) analyses using ProteINSIDE. Discriminant Protein highly abundant in CP-treated cells were involved in actin cytoskeleton organization and negative regulation of cell migration. Interestingly, MARCKSL1, a chemotaxis inhibitor, was upregulated in CP-treated cells. On the contrary, CP incubation downregulated MARCKS, LGALS3, and LGALS8, which are involved in cytoskeleton rearrangements, cell migration, and phagocytosis. In conclusion, these results provide a proteomics background to the anti-inflammatory activity of CP, demonstrating that the in vitro downregulation of phagocytosis and chemotaxis is related to changes in proteins related to the cytoskeleton.

7.
Proc Natl Acad Sci U S A ; 121(37): e2405560121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39231206

RESUMEN

Collective cell migration is crucial in various physiological processes, including wound healing, morphogenesis, and cancer metastasis. Adherens Junctions (AJs) play a pivotal role in regulating cell cohesion and migration dynamics during tissue remodeling. While the role and origin of the junctional mechanical tension at AJs have been extensively studied, the influence of the actin cortex structure and dynamics on junction plasticity remains incompletely understood. Moreover, the mechanisms underlying stress dissipation at junctions are not well elucidated. Here, we found that the ligand-independent phosphorylation of epithelial growth factor receptor (EGFR) downstream of de novo E-cadherin adhesion orchestrates a feedback loop, governing intercellular viscosity via the Rac pathway regulating actin dynamics. Our findings highlight how the E-cadherin-dependent EGFR activity controls the migration mode of collective cell movements independently of intercellular tension. This modulation of effective viscosity coordinates cellular movements within the expanding monolayer, inducing a transition from swirling to laminar flow patterns while maintaining a constant migration front speed. Additionally, we propose a vertex model with adjustable junctional viscosity, capable of replicating all observed cellular flow phenotypes experimentally.


Asunto(s)
Cadherinas , Movimiento Celular , Receptores ErbB , Fosforilación , Movimiento Celular/fisiología , Cadherinas/metabolismo , Receptores ErbB/metabolismo , Viscosidad , Humanos , Animales , Uniones Adherentes/metabolismo , Perros
8.
Cell Rep Methods ; 4(9): 100846, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39241776

RESUMEN

Monocytes are critical to innate immunity, participating in chemotaxis during tissue injury, infection, and inflammatory conditions. However, the migration dynamics of human monocytes under different guidance cues are not well characterized. Here, we developed a microfluidic device to profile the migration characteristics of human monocytes under chemotactic and barotactic guidance cues while also assessing the effects of age and cytokine stimulation. Human monocytes preferentially migrated toward the CCL2 gradient through confined microchannels, regardless of donor age and migration pathway. Stimulation with interferon (IFN)-γ, but not granulocyte-macrophage colony-stimulating factor (GM-CSF), disrupted monocyte navigation through complex paths and decreased monocyte CCL2 chemotaxis, velocity, and CCR2 expression. Additionally, monocytes exhibited a bias toward low-hydraulic-resistance pathways in asymmetric environments, which remained consistent across donor ages, cytokine stimulation, and chemoattractants. This microfluidic system provides insights into the unique migratory behaviors of human monocytes and is a valuable tool for studying peripheral immune cell migration in health and disease.


Asunto(s)
Movimiento Celular , Quimiotaxis , Monocitos , Humanos , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Quimiocina CCL2/metabolismo , Interferón gamma/farmacología , Interferón gamma/metabolismo , Receptores CCR2/metabolismo , Adulto
9.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273445

RESUMEN

Limb muscle is responsible for physical activities and myogenic cell migration during embryogenesis is indispensable for limb muscle formation. Maternal obesity (MO) impairs prenatal skeletal muscle development, but the effects of MO on myogenic cell migration remain to be examined. C57BL/6 mice embryos were collected at E13.5. The GeoMx DSP platform was used to customize five regions along myogenic cell migration routes (myotome, dorsal/ventral limb, limb stroma, limb tip), and data were analyzed by GeomxTools 3.6.0. A total of 2224 genes were down-regulated in the MO group. The GO enrichment analysis showed that MO inhibited migration-related biological processes. The signaling pathways guiding myogenic migration such as hepatocyte growth factor signaling, fibroblast growth factor signaling, Wnt signaling and GTPase signaling were down-regulated in the MO E13.5 limb tip. Correspondingly, the expression levels of genes involved in myogenic cell migration, such as Pax3, Gab1, Pxn, Tln2 and Arpc, were decreased in the MO group, especially in the dorsal and ventral sides of the limb. Additionally, myogenic differentiation-related genes were down-regulated in the MO limb. MO impedes myogenic cell migration and differentiation in the embryonic limb, providing an explanation for the impairment of fetal muscle development and offspring muscle function due to MO.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Desarrollo de Músculos , Obesidad Materna , Animales , Movimiento Celular/genética , Ratones , Femenino , Desarrollo de Músculos/genética , Diferenciación Celular/genética , Embarazo , Obesidad Materna/metabolismo , Obesidad Materna/genética , Ratones Endogámicos C57BL , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Desarrollo Embrionario/genética , Extremidades/embriología , Perfilación de la Expresión Génica , Transducción de Señal , Músculo Esquelético/metabolismo , Músculo Esquelético/embriología
10.
Technol Cancer Res Treat ; 23: 15330338241281310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267432

RESUMEN

Purpose: To investigate the inhibitory effect of antimicrobial peptide merecidin on triple-negative breast cancer (TNBC) and the mechanism of inhibiting epithelial-mesenchymal transformation (EMT) by regulating miR-30d-5p/vimentin. Methods: TNBC cell lines (MDA-MB-231, MDA-MB-468) were treated with merecidin to assess proliferation, migration, invasion ability, and EMT. Confocal laser localization was used to examine the role of merecidin and TNBC cells. The relationship between merecidin and miR-30d-5p was determined through RT-qPCR and dual-luciferase reporter gene, and the relationship between merecidin and vimentin was verified through pulling down the experiment. The effects of miR-30d-5p on the migration and invasion ability of TNBC cells were confirmed through scratch and transwell experiments. Vimentin levels, tumor volume, shape, size, and weight were observed in the MDA-MB-231 subcutaneous tumor model in nude mice. Results: merecidin inhibited the proliferation, migration, invasion, and EMT of TNBC cells. merecidin was primarily located in the cytoplasm of TNBC cells, and the expression of miR-30d-5p was low in TNBC cells. merecidin significantly up-regulated the expression of miR-30d-5p. miR-30d-5p negatively regulated vimentin. merecidin could bind to vimentin in vitro. miR-30d-5p inhibited the migration and invasion ability of TNBC cells, while vimentin promoted their migration and invasion ability. Down-regulation of miR-30d-5p or overexpression of vimentin partially counteracted the inhibitory effects of merecidin on TNBC cell migration, invasion ability, and EMT. In nude mouse tumor models, merecidin significantly suppressed tumor growth. Conclusion: Merecidin effectively blocks the EMT process and inhibits the migration and invasion of TNBC cells by regulating miR-30d-5p/vimentin.


Asunto(s)
Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias de la Mama Triple Negativas , Vimentina , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , MicroARNs/genética , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Vimentina/metabolismo , Ratones , Femenino , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Modelos Animales de Enfermedad , Metástasis de la Neoplasia , Péptidos Catiónicos Antimicrobianos/farmacología
11.
Front Cell Dev Biol ; 12: 1397931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268086

RESUMEN

Emerging evidence suggests a significant contribution of primary cilia to cell division and proliferation. MicroRNAs, especially miR-17, contribute to cell cycle regulation and proliferation. Recent investigations have highlighted the dysregulated expression of miR-17 in various malignancies, underlining its potential role in cancer. However, the correlation between primary cilia and miR-17 has yet to be fully elucidated. The present study examines the presence of miR-17 in primary cilia. The miR-17 expression is studied in selected ciliary protein knockdown cells. Using in situ hybridization (ISH), we identified the subcellular localization of miR-17 in both cilium and cell body. We confirmed the importance of miR-17, progesterone receptor membrane component-2 (PGRMC2), and monosialodihexosylganglioside (GM3S) in cilia formation, as shown by the significant reduction in cilia and cilia length in knockdown cells compared to control. We also demonstrated the involvement of PGRMC2, GM3S, polycystin-2 (PKD2), and miR-17 in cellular proliferation and cell growth. Our studies revealed a hyperproliferative effect in the knockdown cells compared to control cells, suggesting the regulatory roles of PGRMC2/GM3S/PKD2/miR-17 in promoting cell proliferation. Overall, our studies conclude that ciliary proteins are involved in cell division and proliferation. We further hypothesize that primary cilia can serve as compartments to store and control genetic materials, further implicating their complex involvement in cellular processes.

12.
JCI Insight ; 9(17)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253970

RESUMEN

HIV-associated neurocognitive impairment (HIV-NCI) affects 15%-50% of people with HIV (PWH), despite viral suppression with antiretroviral therapy (ART). HIV neuropathogenesis is mediated, in part, by transmigration of infected CD14+CD16+ monocytes across the blood-brain barrier (BBB) into the central nervous system (CNS). In the CNS, CD14+CD16+ monocytes contribute to infection and activation of parenchymal cells, resulting in production of neurotoxic viral and host factors that cause neuronal damage. Mechanisms by which CD14+CD16+ monocytes contribute to HIV-NCI have not been characterized in a study population of PWH on ART without contribution from confounders that affect cognition (e.g., substance use, hepatitis C virus coinfection). We assessed cognitive function, PBMC transmigration across the BBB, and neuronal health markers in a well-defined cohort of 56 PWH on ART using stringent criteria to eliminate confounding factors. We demonstrated that PWH on ART with HIV-NCI have significantly increased transmigration of their CD14+CD16+ monocytes across the BBB compared with those with normal cognition. We showed that hypertension and diabetes may be effect modifiers on the association between CD14+CD16+ monocyte transmigration and cognition. This study underscored the persistent role of CD14+CD16+ monocytes in HIV-NCI, even in PWH with viral suppression, suggesting them as potential targets for therapeutic interventions.


Asunto(s)
Barrera Hematoencefálica , Infecciones por VIH , Receptores de Lipopolisacáridos , Monocitos , Receptores de IgG , Humanos , Barrera Hematoencefálica/metabolismo , Receptores de IgG/metabolismo , Monocitos/metabolismo , Monocitos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Adulto , Proteínas Ligadas a GPI/metabolismo , Complejo SIDA Demencia/inmunología , Complejo SIDA Demencia/metabolismo
13.
Colloids Surf B Biointerfaces ; 245: 114214, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260275

RESUMEN

Study of cell migration in cancer is crucial to the comprehension of the processes and factors that govern tumor spread. Cancer cells migrate invading tissues, causing alterations in cell adhesion, cytoskeleton, and signaling pathways. Little is known about the physical attributes of cancer cells that change when interacting with microenvironments. In this work, the local topography of the ECM has been mimicked through micropillar array substrates. MDA-MB-231 and MCF-7 breast cancer cells, exhibiting high and low metastatic potential, respectively, were analyzed. Differences in morphology and migration of the cells were investigated by examining the cell spreading area, circularity, aspect ratio, migration speed, and migration path. This work encountered that none of the studied cell lines have preferential orientation migrating on uniform patterns. In contrast, cell migration on graded patterns shows preferential orientation along the longitudinal direction from sparser to denser zones which is significantly influenced by substrate stiffness and indicates that both cell lines can sense the spacing gradient and respond to this topographical cue. The migration speed of the breast cancer cell lines significantly decreases from the sparse to medium to dense zones, registering higher values for the MDA-MB-231.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39269914

RESUMEN

Diabetic wound healing including diabetic foot ulcers is a major clinical challenge, which could bring an increased level of mortality and morbidity. However, conventional wound dressings exhibit limited healing efficacy due to their lack of active modulation for the healing process. Here, a near-infrared (NIR) stimuli-responsive composite hydrogel dressing with the synergistic effect of both mechanical contraction and epithelial-mesenchymal transition (EMT) was developed to facilitate cell migration and vascularization for diabetic wound healing. In the methacrylated gelatin-based composite hydrogel, N-isopropylacrylamide and polydopamine nanoparticles were incorporated to endow the composite hydrogel with thermosensitive and photothermal properties. Linagliptin (LIN) was loaded into the composite hydrogel, and the drug release rate could be controlled by NIR laser irradiation. NIR-triggered on-demand active contraction of wound area and LIN release for biological stimulation were potentially realized in this responsive system due to the thermally induced sol-gel transition of the composite hydrogel. The release of loaded LIN could effectively promote cell migration by activating EMT and enhancing angiogenesis. In the full-thickness skin defect model, the LIN-loaded composite hydrogel with NIR laser irradiation had the highest wound closure rate as compared with the pure hydrogel and LIN-loaded hydrogel groups. Therefore, this composite hydrogel can serve as an excellent platform for promoting wound healing and will find more practical value in clinical treatment.

15.
J Biol Eng ; 18(1): 47, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237992

RESUMEN

Epithelial tissues respond strongly to the mechanical stress caused by collective cell migration and are able to regulate it, which is important for biological processes such as morphogenesis, wound healing, and suppression of the spread of cancer. Compressive, tensional, and shear stress components are produced in cells when epithelial monolayers on substrate matrices are actively or passively wetted or de-wetted. Increased compressive stress on cells leads to enhanced cell-cell interactions by increasing the frequency of change the cell-cell distances, triggering various signalling pathways within the cells. This can ultimately lead either to cell jamming or to the extrusion of live cells. Despite extensive research in this field, it remains unclear how cells decide whether to jam, or to extrude a cell or cells, and how cells can reduce the compressive mechanical stress. Live cell extrusion from the overcrowded regions of the monolayers is associated with the presence of topological defects of cell alignment, induced by an interplay between the cell compressive and shear stress components. These topological defects stimulate cell re-alignment, as a part of the cells' tendency to re-establish an ordered trend of cell migration, by intensifying the glancing interactions in overcrowded regions. In addition to individual cell extrusion, collective cell extrusion has also been documented during monolayer active de-wetting, depending on the cell type, matrix stiffness, and boundary conditions. Cell jamming has been discussed in the context of the cells' contact inhibition of locomotion caused by cell head-on interactions. Since cell-cell interactions play a crucial role in cell rearrangement in an overcrowded environment, this review is focused on physical aspects of these interactions in order to stimulate further biological research in the field.

16.
Ecotoxicol Environ Saf ; 284: 116983, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232293

RESUMEN

Microplastics and nanoplastics (MNPs) originating from plastic pollution pose potential threats to cardiovascular health, with prior studies linking MNPs to atherosclerosis. Our earlier research elucidated how nanoplastics enhance macrophages' phagocytic activity, leading to the formation of foam cells and an elevated risk of atherosclerosis. However, the specific influence of MNPs on smooth muscle cells (SMCs) in the context of MNP-induced atherosclerosis remains poorly understood. In this study, ApoE knockout (ApoE-/-) male mice with a high-fat diet were orally exposed to environmentally realistic concentrations of 2.5-250 mg/kg polystyrene nanoplastics (PS-NPs, 50 nm) for consecutive 19 weeks. Cardiovascular toxicity was comprehensively assessed through histopathological, transcriptomic, and proteomic analyses, while mechanisms underlying this toxicity were explored through in vitro studies. Herein, hematoxylin and eosin staining revealed accelerated atherosclerotic plaque development in ApoE-/- mice exposed to PS-NPs. Multi-omics analysis identified kinesin family member 15 (KIF15) as a pivotal target molecule. Both in vitro and in vivo experiments affirmed the specific upregulation of KIF15 in mouse aortic SMCs exposed to PS-NPs. Furthermore, in vitro experiments demonstrated that PS-NPs can promote the migration ability of MOVAS cells. Knockdown of Kif15 revealed its role in reducing MOVAS cell migration, with subsequent exposure to PS-NPs reversing the increased migration ability. This suggests that PS-NPs promote SMC migration by upregulating KIF15, and the migration of SMCs is closely associated with atherosclerosis outcomes. This study significantly advances our understanding of MNP-induced cardiovascular toxicity, providing valuable insights for risk assessment of human MNP exposure.

17.
Eur J Cell Biol ; 103(4): 151454, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39232451

RESUMEN

CTCF is a key factor in three-dimensional chromatin folding and transcriptional control that was found to affect cancer cell migration by a mechanism that is still poorly understood. To identify this mechanism, we used mouse melanoma cells with a partial loss of function (pLoF) of CTCF. We found that CTCF pLoF inhibits cell migration rate while leading to an increase in the expression of multiple enzymes in the cholesterol biosynthesis pathway along with an elevation in the cellular cholesterol level. In agreement with the cholesterol change we detected altered membrane dynamics in CTCF pLoF cells as measured by reduced formation of migrasomes, extracellular vesicles formed at the rear side of migrating cells. Inhibition of cholesterol synthesis in CTCF pLoF cells restored the cellular migration rate and migrasome formation, suggesting that CTCF supports cell migration by suppressing cholesterol synthesis. Detailed analysis of the promoter of Hmgcs1, an early enzyme in the cholesterol synthesis pathway, revealed that CTCF prevents formation of a loop between that promoter and another promoter 200 kb away. CTCF also supports PRC2 recruitment to the promoter and deposition of H3K27me3. H3K27me3 at the promoter of Hmgcs1 prevents SREBP2 binding and activation of transcription. By this mechanism, CTCF fine-tunes cholesterol levels to support cell migration. Notably, genome wide association studies suggest a link between CTCF and cholesterol-associated diseases, thus CTCF emerges as a new regulator of cholesterol biosynthesis.

18.
Cell Signal ; 124: 111382, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243920

RESUMEN

Oxidative stress causes damage to cancer cells and plays an important role in cancer therapy. Antagonizing oxidative stress is crucial for cancer cells to survive during the oxidation-based therapy. In this study, we defined the role of nuclear receptor co-activator 7 (NCOA7) in anti-oxidation in lung cancer cells and found that NCOA7 protects lung cancer A549 cells from the oxidative damage caused by hydrogen peroxide. Knockdown of NCOA7 in A549 cells significantly enhanced the hydrogen peroxide-caused inhibition of cell proliferation and migration, and markedly increased the damage effect of hydrogen peroxide on F-actin and focal adhesion structure, suggesting that NCOA7 protects F-actin and focal adhesion structure, thus the cell proliferation and migration, from oxidation-caused damage. Mechanistically, the anti-oxidation effect of NCOA7 is mediated by its nuclear receptor binding domain, the ERbd domain, suggesting that the anti-oxidation function of NCOA7 is dependent on its nuclear receptor co-activator activity. Our studies identified NCOA7 as an anti-oxidative protein through its nuclear receptor co-activator function and revealed the mechanism underlying the anti-oxidative effect of NCOA7 on cancer cell proliferation and migration.

19.
Int J Biol Macromol ; : 135394, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245093

RESUMEN

The onset and progression of colorectal cancer is intricately linked to a multitude of factors. Among these, immune cells present within the tumor microenvironment play a pivotal role, particularly natural killer (NK) cells, which are essential for mediating anti-tumor immunity. This study aims to elucidate the mechanism by which the VWA2 protein facilitates the invasion and migration of colorectal cancer cells through the inhibition of NK cell activation. Understanding this molecular mechanism is crucial for deciphering the underlying processes involved in colorectal cancer. To achieve the study's objectives, various methodologies were employed, including cell culture techniques, transgenic technology, and assessments of NK cell functionality. The "limma" bioinformatics tool was utilised to identify differentially expressed genes (DEGs) between samples of colon cancer or polyps and normal tissue through transcriptome sequencing. Subsequent Wien analysis was conducted to pinpoint overlapping genes of interest. The impact of VWA2 on both the invasion and migration of colorectal cancer cell lines was assessed through experiments designed for the overexpression and knockout of VWA2.In addition, flow cytometry was employed to evaluate the activation status of NK cells, enabling an analysis of how VWA2 modulates relevant signaling pathways. The findings revealed that overexpression of VWA2 led to a marked inhibition of NK cell activation, which corresponded with reduced cytotoxic activity against tumor cells. Further examination indicated that VWA2 significantly amplified the migration and invasion capabilities of colorectal cancer cells by upregulating immunosuppressive factors while simultaneously downregulating pro-inflammatory factors. Conversely, the reduction of VWA2 expression was shown to markedly enhance NK cell functionality and decrease the invasive potential of colorectal cancer cells. Thus, the evidence suggests that the VWA2 protein actively promotes the migration and invasion of colorectal cancer cells primarily by suppressing NK cell activation, highlighting its potential role as a significant contributor to tumor progression in colorectal cancer.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39246142

RESUMEN

Cell migration is a fundamental and functional cellular process, influenced by complex microenvironment consisting of different cells and extracellular matrix (ECM). Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instruct cell movement. Here, we explore various examples of 3D microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA