Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 402: 130754, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685518

RESUMEN

Microbial electrosynthesis (MES) is an innovative technology that employs microbes to synthesize chemicals by reducing CO2. A comprehensive understanding of cathodic extracellular electron transfer (CEET) is essential for the advancement of this technology. This study explores the impact of different cathodic potentials on CEET and its response to introduction of hydrogen evolution materials (Pt@C). Without the addition of Pt@C, H2-mediated CEET contributed up to 94.4 % at -1.05 V. With the addition of Pt@C, H2-mediated CEET contributions were 76.6 % (-1.05 V) and 19.9 % (-0.85 V), respectively. BRH-c20a was enriched as the dominated microbe (>80 %), and its relative abundance was largely affected by the addition of Pt@C NPs. This study highlights the tunability of MES performance through cathodic potential control and the addition of metal nanoparticles.


Asunto(s)
Electrodos , Hidrógeno , Platino (Metal) , Platino (Metal)/química , Transporte de Electrón , Hidrógeno/metabolismo , Fuentes de Energía Bioeléctrica , Carbono/farmacología , Nanopartículas del Metal/química , Espacio Extracelular/química , Espacio Extracelular/metabolismo , Electrones
2.
Environ Res ; 216(Pt 1): 114477, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202244

RESUMEN

Bioelectrochemical systems with biocathodes constitute a promising means to enhance the biological dechlorination of 2,4,6-trichlorophenol (2,4,6-TCP) in constructed wetland (CW) sediments. However, the effect of different cathodic potentials on the structure and function of 2,4,6-TCP-reducing biocathode communities in CW sediments is largely unknown. Here, we evaluated the performance and microbial community structure of 2,4,6-TCP-reducing biocathode systems at different cathodic potentials (- 0.5, - 0.7, - 0.9, and - 1.1 V vs. saturated calomel electrode). The dechlorination efficiency of 2,4,6-TCP with the biocathode relatively increased by 16.02%-33.17% compared to that in the open circuit. The highest 2,4,6-TCP dechlorination efficiency (92.34 ± 0.86%) was observed at - 0.7 V in sediment, which may be due to the highest abundance of functional genera (e.g., Pseudomonas, Spirochaeta) at - 0.7 V. Metagenomic analysis provided new insights into the metabolic potential of microorganisms in CW sediments and suggested possible 2,4,6-TCP conversion pathways in sediments. 2,4,6-TCP was gradually dechlorinated to form 4-chlorophenol, followed by a ring-opening step via the activities of chlorophenol reductive dehalogenase and oxygenase (e.g., cprA, tfdB). Interestingly, micro-electrical stimulation enhanced the expression of chlorophenol reductive dehalogenase (cprA). Therefore, our findings at the molecular and gene expression levels provide insights into the effects of different cathodic potentials on the performance and community structure of 2,4,6-TCP-reducing biocathode systems in CW sediments.


Asunto(s)
Clorofenoles , Microbiota , Clorofenoles/química , Electrodos , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental
3.
Environ Res ; 215(Pt 1): 114247, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36058274

RESUMEN

Dichloromethane (DCM) is a recalcitrant volatile organic compound that exhibits biological toxicity and bioaccumulation. In this study, gaseous DCM was removed using an electroactive bacterial biofilter (EBB) with graphite rod as the anode and carbon felt as the cathode. The highest removal efficiency (97.09%) was achieved at a cathodic potential of -600 mV (vs. Ag/AgCl). The EBB had a maximum elimination capacity of 79.29 g m-3 h-1 when the inlet load was 96.48 g m-3 h-1. There was no substrate inhibition phenomenon observed in the EBB, and the Michaelis-Menten model was used to describe the kinetics of the EBB. High-throughput sequencing indicated that electroactive genera such as Rhodanobacter sp., Sphingomonas sp., Pseudomonas sp., Chryseobacterium sp., Pseudochrobactrum sp., and Mycobacterium sp. dominated the EBB. The microbial communities were stable and were slightly affected by the DCM inlet concentration. The results can be applied for the effective treatment of recalcitrant volatile organic compounds (VOCs).


Asunto(s)
Grafito , Microbiota , Compuestos Orgánicos Volátiles , Bacterias , Biodegradación Ambiental , Fibra de Carbono , Filtración/métodos , Cloruro de Metileno/química
4.
Nanomicro Lett ; 14(1): 121, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505158

RESUMEN

Bismuth-based materials (e.g., metallic, oxides and subcarbonate) are emerged as promising electrocatalysts for converting CO2 to formate. However, Bio-based electrocatalysts possess high overpotentials, while bismuth oxides and subcarbonate encounter stability issues. This work is designated to exemplify that the operando synthesis can be an effective means to enhance the stability of electrocatalysts under operando CO2RR conditions. A synthetic approach is developed to electrochemically convert BiOCl into Cl-containing subcarbonate (Bi2O2(CO3)xCly) under operando CO2RR conditions. The systematic operando spectroscopic studies depict that BiOCl is converted to Bi2O2(CO3)xCly via a cathodic potential-promoted anion-exchange process. The operando synthesized Bi2O2(CO3)xCly can tolerate - 1.0 V versus RHE, while for the wet-chemistry synthesized pure Bi2O2CO3, the formation of metallic Bio occurs at - 0.6 V versus RHE. At - 0.8 V versus RHE, Bi2O2(CO3)xCly can readily attain a FEHCOO- of 97.9%, much higher than that of the pure Bi2O2CO3 (81.3%). DFT calculations indicate that differing from the pure Bi2O2CO3-catalyzed CO2RR, where formate is formed via a *OCHO intermediate step that requires a high energy input energy of 2.69 eV to proceed, the formation of HCOO- over Bi2O2(CO3)xCly has proceeded via a *COOH intermediate step that only requires low energy input of 2.56 eV.

5.
Bioresour Technol ; 348: 126807, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35124217

RESUMEN

Performances of anodic ammonia oxidation have been investigated for various bioelectrochemical systems at a wide range of poised anodic potentials in the literature. The effect of poised cathodic potential on ammonium nitrogen (NH4+-N) and total nitrogen (TN, sum of NH4+-N, NO2--N, and NO3--N) removal from domestic wastewater by single chamber air-cathode microbial fuel cells (MFCs) was investigated. Poising the air-cathode potential at +0.7 V vs. SHE significantly increased current generation (from 11 ± 1 mA to 22.8 ± 5 mA) and oxygen permeation into the MFC through the air-cathode (from 75.4 ± 1.2 g-O2/m3/d to 151 ± 3.7 g-O2/m3/d), which consequently resulted in a high NH4+-N removal rate of 150 ± 13 g-NH4+-N/m3/d and TN removal rate of 63 ± 16 g-TN/m3/d. These high NH4+-N and TN removal rates could be attributed to the enhancement of dual respiratory pathways: the electrode-assisted anodic and aerobic NH4+ oxidation.


Asunto(s)
Compuestos de Amonio , Fuentes de Energía Bioeléctrica , Desnitrificación , Electrodos , Nitrógeno/análisis , Aguas Residuales
6.
J Hazard Mater ; 386: 121941, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31884365

RESUMEN

Proper treatment of mining wastewaters is critically important to minimize contamination by heavy metals contained in those wastewaters. Herein, a bioelectrochemically-assisted electrodeposition (BES-EDP) system was developed and investigated for selective removal and recovery of Pb and Zn from a mimicked smelting wastewater. It was observed that those two metals were reduced at different cathodic potentials and electrodeposition time. At a cathodic potential of -0.75 V vs. Ag/AgCl, 98.5 ± 1.4 % of Pb was recovered after 10 h of reaction while there was little Zn deposition. Increasing the cathodic potential to -1.2 V could achieve 98.7 ± 0.7 % of Zn with the electrodeposition time of 6 h. The composition of the deposits confirmed the results from solution analysis and metal oxides were also formed during metal reduction. The diffusion impedance was much higher than the charge transfer resistance, suggesting that the diffusion process was a rate limiting step for electrodeposition. The diffusion process was verified by chronoamperometry with a good fit in Cottrell equation. The electrodeposition equilibrium constant k0 was determined as 3.76 cm s-1. Those results have demonstrated the feasibility of using bioelectricity to assist with selective metal recovery and warrant further investigation of technologies for sustainable management of mining wastewaters.


Asunto(s)
Técnicas Electroquímicas/métodos , Plomo/aislamiento & purificación , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Zinc/aislamiento & purificación , Electrodos , Minería , Modelos Teóricos
7.
Materials (Basel) ; 12(4)2019 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-30781580

RESUMEN

As the sole metal that could reduce CO2 to substantial amounts of hydrocarbons, Cu plays an important role in electrochemical CO2 reduction, despite its low energy efficiency. Surface morphology modification is an effective method to improve its reaction activity and selectivity. Different from the pretreated modification method, in which the catalysts self-reconstruction process was ignored, we present operando synthesis by simultaneous electro-dissolution and electro-redeposition of copper during the CO2 electroreduction process. Through controlling the cathodic potential and CO2 flow rate, various high-curvature morphologies including microclusters, microspheres, nanoneedles, and nanowhiskers have been obtained, for which the real-time activity and product distribution is analyzed. The best CO2 electro-reduction activity and favored C2H4 generation activity, with around 10% faradic efficiency, can be realized through extensively distributed copper nanowhiskers synthesized under 40 mL/min flow rate and -2.1 V potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA