Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202400647, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853691

RESUMEN

We report the catalytic synthesis of 3-hydroxy-2-butanon (acetoin) from acetaldehyde as a key step in the synthesis of C4-molecules from ethanol. Facile C-C bond formation at the α-carbon of the C2 building block is achieved using an N-heterocyclic carbene (NHC) catalyst. The immobilization of the catalyst on a Merrifield's peptide resin and its spectroscopic characterisation using solid-state Nuclear Magnetic Resonance (NMR) is described herein. The immobilization of the NHC catalyst allows for process intensification steps and the reported catalytic system was subjected to batch recycling as well as continuous flow experiments. The robustness of the catalytic system was shown over a maximum of 10 h time-on-stream. Overall, high selectivity S>90 % was observed. The observed deactivation of the catalyst with increasing time-on-stream is explained by ex-situ 1H solution-state, as well as 13C and 15N solid-state NMR spectra allowing us to develop a deeper understanding of the underlying decomposition mechanism of the catalyst.

2.
Biotechnol Adv ; 69: 108262, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37758024

RESUMEN

Biomass is regarded as the only carbon-containing renewable energy source and has performed an increasingly important role in the gradual substitution of conventional fossil energy, which also contributes to the goals of carbon neutrality. In the past decade, the academic field has paid much greater attention to the development of biomass pyrolysis technologies. However, most biomass conversion technologies mainly derive from the fossil fuel industry, and it must be noticed that the large element component difference between biomass and traditional fossil fuels. Thus, it's necessary to develop biomass directional pyrolysis technology based on the unique element distribution of biomass for realizing enrichment target element (i.e., element economy). This article provides a broad review of biomass directional pyrolysis to produce high-quality fuels, chemicals, and carbon materials based on element economy. The C (carbon) element economy of biomass pyrolysis is realized by the production of high-performance carbon materials from different carbon sources. For efficient H (hydrogen) element utilization, high-value hydrocarbons could be obtained by the co-pyrolysis or catalytic pyrolysis of biomass and cheap hydrogen source. For improving the O (oxygen) element economy, different from the traditional hydrodeoxygenation (HDO) process, the high content of O in biomass would also become an advantage because biomass is an appropriate raw material for producing oxygenated liquid additives. Based on the N (nitrogen) element economy, the recent studies on preparing N-containing chemicals (or N-rich carbon materials) are reviewed. Moreover, the feasibility of the biomass poly-generation industrialization and the suitable process for different types of target products are also mentioned. Moreover, the enviro-economic assessment of representative biomass pyrolysis technologies is analyzed. Finally, the brief challenges and perspectives of biomass pyrolysis are provided.


Asunto(s)
Carbono , Pirólisis , Biomasa , Carbono/química , Biocombustibles , Hidrógeno/química , Catálisis
3.
Bioresour Technol ; 346: 126645, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34973401

RESUMEN

An integrated catalytic process for natural-gas-assisted OSW upgrading is fully demonstrated at a pilot scale, which combines the methanolysis, methano-refining and catalytic liquefaction processes through careful process design and catalyst tailoring. Three types of agricultural and forestry wastes including pelleted wood chip, crushed rice straw and crushed corn stover are used as representatives of OSW for at least a 1-month continuous operation. The products are comprehensively analyzed and the indices for quality control in terms of basic, compositional, and fuel properties, as well as elemental and distillation analyses, are monitored and proved to be satisfactory for practical use. Economic assessment and life cycle analysis are also performed. It is validated that the OSW upgrading process under a natural gas atmosphere exhibits favorable feasibility, stability, operational margins and environmental friendliness. This exploration manifests an alternative route for simultaneous energy supply and waste management with great economic and environmental advantages.


Asunto(s)
Residuos Sólidos , Administración de Residuos , Biocombustibles/análisis , Catálisis , Gas Natural
4.
J Pet Explor Prod Technol ; 12(3): 661-678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34692365

RESUMEN

Heavy oils and bitumen are indispensable resources for a turbulent-free transition to a decarbonized global energy and economic system. This is because according to the analysis of the International Energy Agency's 2020 estimates, the world requires up to 770 billion barrels of oil from now to year 2040. However, BP's 2020 statistical review of world energy has shown that the global total reserves of the cheap-to-produce conventional oil are roughly only 520.2 billion barrels. This implies that the huge reserves of the practically unexploited difficult-and-costly-to-upgrade-and-produce heavy oils and bitumen must be immediately developed using advanced upgrading and extraction technologies which have greener credentials. Furthermore, in accordance with climate change mitigation strategies and to efficiently develop the heavy oils and bitumen resources, producers would like to maximize their upgrading within the reservoirs by using energy-efficient and environmentally friendly technologies such as the yet-to-be-fully-understood THAI-CAPRI process. The THAI-CAPRI process uses in situ combustion and in situ catalytic reactions to produce high-quality oil from heavy oils and bitumen reservoirs. However, prolonging catalyst life and effectiveness and maximizing catalytic reactions are a major challenge in the THAI-CAPRI process. Therefore, in this work, the first ever-detailed investigations of the effects of alumina-supported cobalt oxide-molybdenum oxide (CoMo/γ-Al2O3) catalyst packing porosity on the performance of the THAI-CAPRI process are performed through numerical simulations using CMG STARS. The key findings in this study include: the larger the catalyst packing porosity, the higher the accessible surface area for the mobilized oil to reach the inner coke-uncoated catalysts and thus the higher the API gravity and quality of the produced oil, which clearly indicated that sulphur and nitrogen heteroatoms were catalytically removed and replaced with hydrogen. Over the 290 min of combustion period, slightly more oil (i.e. an additional 0.43% oil originally in place (OOIP)) is recovered in the model which has the higher catalyst packing porosity. In other words, there is a cumulative oil production of 2330 cm3 when the catalyst packing porosity is 56% versus a cumulative oil production of 2300 cm3 in the model whose catalyst packing porosity is 45%. The larger the catalyst packing porosity, the lower the mass and thus cost of the catalyst required per m3 of annular space around the horizontal producer well. The peak temperature and the very small amount of produced oxygen are only marginally affected by the catalyst packing porosity, thereby implying that the extents of the combustion and thermal cracking reactions are respectively the same in both models. Thus, the higher upgrading achieved in the model whose catalyst packing porosity is 56% is purely due to the fact that the extent of the catalytic reactions in the model is larger than those in the model whose catalyst packing porosity is 45%.

5.
Chem Eng J ; 413: 127420, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33106747

RESUMEN

In-situ combustion alone may not provide sufficient heating for downhole, catalytic upgrading of heavy oil in the Toe-to-Heel Air Injection (THAI) process. In this study, a new microwave heating technique has been proposed as a strategy to provide the requisite heating. Microwave technology is alone able to provide rapid heating which can be targeted at the catalyst packing and/or the incoming oil in its immediate vicinity. It was demonstrated, contrary to previous assertions, that heavy oil can be heated directly with microwaves to 425 °C, which is the temperature needed for successful catalytic upgrading, without the need for an additional microwave susceptor. Upgrading of >3.2° API points, a reduction in viscosity to less than 100 cP, and >12% reduction in sulfur content was achieved using commercially available hydrodesulfurization (HDS) catalyst. The HDS catalyst induced dehydrogenation, with nearly 20% hydrogen detected in the gas product. Hence, in THAI field settings, part of the oil-in-place could be sacrificed for dehydrogenation, with the produced hydrogen directed to aid hydrodesulfurization and improve upgrading. Further, this could provide a route for downhole hydrogen production, which can contribute to the efforts towards the hydrogen economy. A single, unified model of evolving catalyst structure was developed. The model incorporated the unusual gas sorption data, computerized x-ray tomography and electron microprobe characterization, as well as the reaction behavior. The proposed model also highlighted the significant impact of the particular catalyst fabrication process on the catalytic activity.

6.
Bioresour Technol ; 301: 122739, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31945683

RESUMEN

Fast pyrolysis of corn stalk (CS) was performed by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and the product distribution was measured as a function of temperature, time, and catalyst. The types and yields of product compounds were influenced dramatically by temperature, while the duration of the reaction had little effect on the type of compound. Three primary components in the biomass interacted during pyrolysis. The maximum proportions of aldehydes (27.26%), furans (5.93%), and olefins (6.46%), and the minimum proportions of alcohols (0%) and carbohydrates (0.74%) were obtained over MCM-41. HZSM-5 improved the selectivity of aromatic hydrocarbons while inhibiting acid formation. The proportion of N-compounds was maximal (23.39%) over ZrO2. ZnCl2 tended to generate the least amounts of ketones (2.02%), phenols (9.08%), and esters (2.16%), but the greatest amount of carbohydrates (37.31%). K2SO4 promoted the formation of acids, ketones, alcohols, and phenols, while reducing the production of N-compounds and aldehydes.


Asunto(s)
Pirólisis , Zea mays , Biomasa , Catálisis , Calor
7.
Waste Manag Res ; 37(2): 157-167, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30249165

RESUMEN

The objective of this study was to examine the potential of poultry wastes to be used as feedstock in non-catalytic and catalytic fast pyrolysis processes, which is a continuation of our previous research on their conversion into biofuel via slow pyrolysis and hydrothermal conversion. Both poultry meal and poultry litter were examined, initially in a fixed bed bench-scale reactor using ZSM-5 and MgO as catalysts. Pyrolysis of poultry meal yielded high amounts of bio-oil, while pyrolysis of poultry litter yielded high amounts of solid residue owing to its high ash content. MgO was found to be more effective for the deoxygenation of bio-oil and reduction of undesirable compounds, by converting mainly the acids in the pyrolysis vapours of poultry meal into aliphatic hydrocarbons. ZSM-5 favoured the formation of both aromatic compounds and undesirable nitrogenous compounds. Overall, all bio-oil samples from the pyrolysis of poultry wastes contained relatively high amounts of nitrogen compared with bio-oils from lignocellulosic biomass, ca. 9 wt.% in the case of poultry meal and ca. 5-8 wt.% in the case of poultry litter. This was attributed to the high nitrogen content of the poultry wastes, unlike that of lignocellulosic biomass. Poultry meal yielded the highest amount of bio-oil and was selected as optimum feedstock to be scaled-up in a semi-pilot scale fluidised bed biomass pyrolysis unit with the ZSM-5 catalyst. Pyrolysis in the fluidised bed reactor was more efficient for deoxygenation of the bio-oil vapours, as evidenced from the lower oxygen content of the bio-oil.


Asunto(s)
Biocombustibles , Residuos Industriales , Animales , Biomasa , Catálisis , Aves de Corral , Pirólisis
8.
Bioresour Technol ; 247: 851-858, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30060422

RESUMEN

In-situ and ex-situ catalytic upgrading with HZSM-5 of vapors from microwave-assisted pyrolysis of lignin were studied. The in-situ process produced higher bio-oil and less char than ex-situ process. The gas yield was similar for both processes. The ex-situ process had higher selectivity to aromatics and produced more syngas and less CO2 than the in-situ process. Additional experiments on ex-situ process found that the bio-oil yield and coke deposition decreased while the gas yield increased at higher catalyst-to-lignin ratios and catalytic upgrading temperatures. The increased catalyst-to-lignin ratio from 0 to 0.3 reduced the selectivity of methoxy phenols from 73.7% to 22.6% while increased that of aromatics from 1.1% to 41.4%. The highest selectivity of alkyl phenols (31.9%) was obtained at 0.2 of catalyst-to-lignin ratio. Higher catalytic temperatures favored greater conversion of methoxy phenols to alkyl phenols and aromatics. Appropriate catalyst-to-lignin ratio (0.3) together with higher catalytic temperatures favored syngas formation.


Asunto(s)
Lignina , Microondas , Biocombustibles , Catálisis , Calor , Eliminación de Residuos
9.
Biotechnol Biofuels ; 11: 83, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619079

RESUMEN

BACKGROUND: In this study, a two-step processing method (hydrothermal liquefaction followed by catalytic upgrading) was used to produce upgraded bio-oil. A comprehensive screening analysis of algal species, including four microalgae and four macroalgae, was conducted to bridge the gap between previous accounts of microalgae and macroalgae hydrothermal liquefaction and the upgrading process of the resulting crude bio-oils. RESULTS: Hydrothermal liquefaction using eight algal biomasses was performed at 350 °C for 1 h. The microalgae always produced a higher crude bio-oil yield than the macroalgae due to their high lipid content, among which Schizochytrium limacinum provided the maximum crude bio-oil yield of 54.42 wt%. For microalgae, higher amounts of N in the biomass resulted in higher amounts of N in the crude bio-oil; however, contrary results were observed for the macroalgae. The crude bio-oils generated from both the microalgae and macroalgae were characterized as having a high viscosity, total acid number, and heteroatom content, and they were influenced by the biochemical compositions of the feedstocks. Next, all eight-crude bio-oils were treated at 400 °C for 2 h with 10 wt% Ru/C using tetralin as the hydrogen donor. The hydrogen source was provided after tetralin was transformed to naphthalene. All the upgraded bio-oils had higher energy densities and significantly lower N, O, and S contents and viscosities than their corresponding crude bio-oils. However, the H/C molar ratio of the upgraded bio-oils decreased due to the absence of external hydrogen relative to the crude bio-oils. The S content of the upgraded bio-oil produced from upgrading the Schizochytrium limacinum crude bio-oil was even close to the 50 ppm requirement of China IV diesel. CONCLUSIONS: Microalgae are better feedstocks than macroalgae for liquid fuel production. Biochemical components have a significant impact on the yield and composition of crude bio-oil. Tetralin does not perform as well as external hydrogen for controlling coke formation. The S content of the upgraded bio-oil can be reduced to 76 ppm for the crude bio-oil produced from Schizochytrium limacinum. Upgraded bio-oils have similar properties to those of naphtha and jet fuel.

10.
Bioresour Technol ; 252: 28-36, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29306126

RESUMEN

Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH4, CO, CO2 and lower alkanes.


Asunto(s)
Biocombustibles , Aceites de Plantas , Catálisis , Polifenoles , Temperatura , Agua
11.
J Environ Sci (China) ; 45: 240-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27372139

RESUMEN

A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio.


Asunto(s)
Biocombustibles , Incineración/métodos , Microondas , Biomasa , Catálisis , Temperatura
12.
Bioresour Technol ; 214: 700-710, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27209452

RESUMEN

The pinewood was pyrolyzed in the first reactor at a heating rate of 10°Cmin(-1) from room temperature to 700°C, and the vapor was allowed to be cracked through the second reactor in a temperature range of 450-750°C without and with HZSM-5. Attempts were made to determine a wide spectrum of gaseous and liquid products, as well as the mass and element partitions to gas, water, bio-oil, coke and char. HZSM-5 showed a preferential deoxygenation effect via the facilitated decarbonylation and decarboxylation with the inhibited dehydration at 550-600°C. This catalyst also displayed a high selectivity for the formations of aromatic hydrocarbons and olefins by the promoted hydrogen transfer to these products at 550-600°C. The bio-oil produced with HZSM-5 at 500-600°C had the yields of 14.5-16.8%, the high heat values of 39.1-42.4MJkg(-1), and the energy recoveries of 33-35% (all dry biomass basis).


Asunto(s)
Biotecnología/métodos , Catálisis , Gases/química , Madera/química , Zeolitas , Alquenos/química , Biocombustibles , Biomasa , Biotecnología/instrumentación , Dióxido de Carbono/química , Monóxido de Carbono/química , Calefacción , Hidrocarburos Aromáticos/química , Hidrógeno/química , Metano/química , Pinus/química , Protones , Agua/química
13.
Waste Manag ; 49: 304-310, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26739453

RESUMEN

Biomass fast pyrolysis followed by hydrodeoxygenation upgrading is the most popular way to produce upgraded bio-oil from biomass. This process requires large quantities of expensive hydrogen and operates under high pressure condition (70-140 atm). Therefore, a novel methanolysis (i.e., biomass pyrolysis under methane environment) process is developed in this study, which is effective in upgraded bio-oil formation at atmospheric pressure and at about 400-600°C. Instead of using pure methane, simulated biogas (60% CH4+40% CO2) was used to test the feasibility of this novel methanolysis process for the conversion of different solid wastes. The bio-oil obtained from canola straw is slightly less than that from sawdust in term of quantity, but the oil quality from canola straw is better in terms of lower acidity, lower Bromine Number, higher H/C atomic ratio and lower O/C atomic ratio. The municipal solid waste and newspaper can also obtain relatively high oil yields, but the oil qualities of them are both lower than those from sawdust and canola straw. Compared with catalysts of 5%Zn/ZSM-5 and 1%Ag/ZSM-5, the 5%Zn-1%Ag/ZSM-5 catalyst performed much better in terms of upgraded bio-oil yield as well as oil quality. During the methanolysis process, the metal silver may be used to reduce the total acid number of the oil while the metal zinc might act to decrease the bromine number of the oil. The highly dispersed Zn and Ag species on/in the catalyst benefit the achievement of better upgrading performance and make it be a very promising catalyst for bio-oil upgrading by biogas.


Asunto(s)
Biocombustibles/análisis , Metano/química , Residuos Sólidos/análisis , Administración de Residuos/métodos , Biomasa , Fuentes Generadoras de Energía
14.
Bioresour Technol ; 194: 312-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26210145

RESUMEN

Ex situ catalytic pyrolysis of Citrus unshiu (C. unshiu) peel was performed using a tandem µ-reactor-GC/MS consisting of two sequential furnaces. The pyrolyzates of C. unshiu peel, composed mainly of alcohols, ketones and furans produced in the 1st furnace of the reactor, were upgraded to aromatics by the use of catalysts in the 2nd furnace. Compared to wood powder, C. unshiu peel produced larger amounts of aromatics over HZSM-5(23). Among the various catalysts, HZSM-5(23) and HBETA(25) showed high aromatic yields, 6.78 C% and 9.69 C%, respectively. HBETA(25) produced large amounts of undesirable PAHs (3.59 C%). During the sequential catalytic upgrading test, the yield of BTEXs (benzene, toluene, ethylbenzene, xylenes) over HZSM-5(23) was reduced more slowly than that over HBETA(25) because of the slower deactivation of HZSM-5(23), which suggests that HZSM-5(23) is a more stable catalyst than the other catalysts used in this study during the sequential catalytic upgrading of C. unshiu peel pyrolyzates.


Asunto(s)
Biotecnología/métodos , Citrus/química , Temperatura , Residuos/análisis , Catálisis , Carbón Orgánico/análisis , Coque , Cromatografía de Gases y Espectrometría de Masas , Gases/análisis , Iones , Aceites/análisis , Polvos , Zeolitas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA