Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.308
Filtrar
1.
J Environ Sci (China) ; 149: 177-187, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181632

RESUMEN

In the context of peaking carbon dioxide emissions and carbon neutrality, development of feasible methods for converting CO2 into high value-added chemicals stands out as a hot subject. In this study, P[D+COO-][Br-][DBUH+], a series of novel heterogeneous dual-ionic poly(ionic liquid)s (PILs) were synthesized readily from 2-(dimethylamino) ethyl methacrylate (DMAEMA), bromo-substituted aliphatic acids, organic bases and divinylbenzene (DVB). The structures, compositions and morphologies were characterized or determined by nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), infrared spectroscopy (IR), scanning electron microscopes (SEM), and Brunauer-Emmett-Teller analysis (BET), etc. Application of the P[D+COO-][Br-][DBUH+] series as catalysts in converting CO2 into cyclic carbonates showed that P[D+COO-][Br-][DBUH+]-2/1/0.6 was able to catalyze epiclorohydrin-CO2 cycloaddition the most efficiently. This afforded chloropropylene carbonate (CPC) in 98.4% yield with ≥ 99% selectivity in 24 hr under solvent- and additive-free conditions at atmospheric pressure. Reusability experiments showed that recycling of the catalyst 6 times only resulted in a slight decline in the catalytic performance. In addition, it could be used for the synthesis of a variety of differently substituted cyclic carbonates in good to excellent yields. Finally, key catalytic active sites were probed, and a reasonable mechanism was proposed accordingly. In summary, this work poses an efficient strategy for heterogenization of dual-ionic PILs and provides a mild and environmentally benign approach to the fixation and utilization of carbon dioxide.


Asunto(s)
Dióxido de Carbono , Carbonatos , Líquidos Iónicos , Líquidos Iónicos/química , Dióxido de Carbono/química , Carbonatos/química , Catálisis , Modelos Químicos
2.
J Environ Sci (China) ; 149: 598-615, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181671

RESUMEN

Catalytic hydrogenation of CO2 to ethanol is a promising solution to address the greenhouse gas (GHG) emissions, but many current catalysts face efficiency and cost challenges. Cobalt based catalysts are frequently examined due to their abundance, cost-efficiency, and effectiveness in the reaction, where managing the Co0 to Coδ+ ratio is essential. In this study, we adjusted support nature (Al2O3, MgO-MgAl2O4, and MgO) and reduction conditions to optimize this balance of Co0 to Coδ+ sites on the catalyst surface, enhancing ethanol production. The selectivity of ethanol reached 17.9% in a continuous flow fixed bed micro-reactor over 20 mol% Co@MgO-MgAl2O4 (CoMgAl) catalyst at 270 °C and 3.0 MPa, when reduced at 400 °C for 8 h. Characterisation results coupled with activity analysis confirmed that mild reduction condition (400 °C, 10% H2 balance N2, 8 h) with intermediate metal support interaction favoured the generation of partially reduced Co sites (Coδ+ and Co0 sites in single atom) over MgO-MgAl2O4 surface, which promoted ethanol synthesis by coupling of dissociative (CHx*)/non-dissociative (CHxO*) intermediates, as confirmed by density functional theory analysis. Additionally, the CoMgAl, affordably prepared through the coprecipitation method, offers a potential alternative for CO2 hydrogenation to yield valuable chemicals.


Asunto(s)
Dióxido de Carbono , Cobalto , Etanol , Dióxido de Carbono/química , Etanol/química , Hidrogenación , Cobalto/química , Catálisis , Nanopartículas/química , Modelos Químicos
3.
J Colloid Interface Sci ; 678(Pt A): 858-871, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39222606

RESUMEN

Valorization of iron-rich metallurgical slags in the construction of Fenton-like catalysts has an appealing potential from the perspective of sustainable development. For the first time, copper smelting slag (CSS) was utilized as the precursor to synthesize hollow sea urchin-like Fe-Cu nanoreactors (Cu1.5Fe1Si) to activate peroxymonosulfate (PMS) for chlortetracycline hydrochloride (CTC) degradation. The hyper-channels and nano-sized cavities were formed in the catalysts owing to the induction and modification of Cu, not only promoting the in-situ growth of silicates and the formation of cavities due to the etching of SiO2 microspheres, but also resulting the generation of nanotubes through the distortion and rotation of the nanosheets. It was found that 100 % CTC degradation rate can be achieved within 10 min for Cu1.5Fe1Si, 75 times higher than that of Cu0Fe1Si (0.0024 up to 0.18 M-1‧min-1). The unique nanoconfined microenvironment structure could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of active species. Density functional theory (DFT) calculations show that Cu1.5Fe1Si has strong adsorption energy and excellent electron transport capacity for PMS, and Fe-Fe sites are mainly responsible for the activation of PMS, while Cu assists in accelerating the Fe(II)/Fe(Ⅲ) cycle and promotes the catalytic efficiency. The excellent mineralization rate (83.32 % within 10 min) and efficient treatment of CTC in consecutive trials corroborated the high activity and stability of the Cu1.5Fe1Si. This work provides a new idea for the rational design of solid waste-based eco-friendly functional materials, aiming at consolidating their practical application in advanced wastewater treatment.

4.
Angew Chem Int Ed Engl ; : e202414938, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255399

RESUMEN

Polarity-reversal catalysts (PRCs) for hydrogen-atom transfer reactions have been known in radical chemistry for more than 60 years but are rarely described and utilized in the field of photopolymerization up to now. Herein, we present the use of thiols in a unique dual function as thiol-ene click reagents and as polarity-reversal catalyst (PRC) for the radical-mediated redox rearrangements of benzylidene acetals. During the rearrangement reaction, cyclic benzylidene acetals are transformed into benzoate esters leading to a significant volumetric expansion to reduce thermoset shrinkage. We were able to show that this expansion on a molecular level reduces shrinkage and polymerization stress but does not significantly affect the (thermo-)mechanical properties of the cross-linked networks. One of the key advantages of this process lies in its simplicity. No additives like sensitizers or combinations of different initiators (radical and cationic) are needed. Furthermore, the same light source can be used for both the polymerization reaction and expansion through rearrangement. Additionally, the applied photoinitiator enables spatial and temporal control of the polymerization; thus, the developed system can be an excellent platform for additive manufacturing processes.

5.
Angew Chem Int Ed Engl ; : e202414625, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254212

RESUMEN

A high-efficiency PtZnCd nanozyme was screened with density functional theory (DFT) and unique d-orbital coupling features for sensitive enrichment and real-time analysis of CO-releasing molecule-3 (CORM-3). Multi-catalytic sites in the nanozyme showed a high reactivity of up to 72.89 min-1 for peroxidase-like enzymes (POD) reaction, which was 2.2, 4.07, and 14.67 times higher than that of PtZn (32.67 min-1), PtCd (17.89 min-1), and Pt (4.97 min-1), respectively. Normalization of the catalytic sites showed that the catalytic capacity of the active site in PtZnCd was 2.962 U µmol-1, which was four times higher than that of pure Pt site (0.733 U µmol-1). DFT calculations showed that improved d-orbital coupling between different metals reduces the position of the center of the shifted whole d-band relative to the Fermi energy level, thereby increasing the contribution of the sites to the electron transfer from the active center, accompanied with enhanced substrate adsorption and intermediate conversion in the catalytic process. The potential adsorption principle and color development mechanism of CORM-3 on PtZnCd were determined, and the practical application in drug metabolism was validated in vitro, in zebrafish and mice as a model, demonstrating that transition metal doping effectively engineers high-performance nanozymes and optimizes artificial enzymes.

6.
J Colloid Interface Sci ; 678(Pt B): 88-94, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241450

RESUMEN

Considerable attention has been paid to the preparation of single-atom solid base catalysts (SASBCs) owing to their high activity and maximized utilization of basic sites. At present, the reported fabrication methods of SASBCs, such as two-step reduction strategy and sublimation capture strategy, require high temperature. Such a high activation temperature is easy to cause the sublimation loss of alkali or alkaline earth metal atoms and destructive to the support structure. Herein, a new SASBC, Ca1/UiO-67-BPY, is fabricated, in which the alkaline earth metal Ca sites are immobilized onto N-rich metal-organic framework UiO-67-BPY at room temperature. The results show that the atomic configuration of Ca single atoms is coordinated by two N atoms in the framework. The obtained Ca SASBC possesses ordered structure and exhibits high product yield of 87.2% in the Knoevenagel reaction between benzaldehyde and malononitrile. Furthermore, thanks to the Ca single atoms sites anchored on UiO-67-BPY, the Ca1/UiO-67-BPY catalyst also shows good stability during cycles. This work might offer new insight in designing SASBCs for different base-catalyzed reactions.

7.
J Colloid Interface Sci ; 678(Pt B): 153-161, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241446

RESUMEN

Efficient CC bond cleavage and the complete oxidation of alcohols are key to improving the efficiency of renewable energy utilization. Herein, we successfully prepare porous Fe-doped hexagonal close-packed (hcp)-PtBi/face-centered cubic (fcc)-Pt heterostructured nanoplates with abundant grain/phase interfaces (h-PtBi/f-Pt@Fe1.7 PNPs) via a simple solvothermal method. The open porous structure, abundant grain/phase interface and stacking fault defects, and the synergistic effect between intermetallic hcp-PtBi and fcc-Pt make h-PtBi/f-Pt@Fe1.7 PNPs an effective electrocatalyst for the glycerol oxidation reaction (GOR) in direct glycerol fuel cells (DGFCs). Notably, the h-PtBi/f-Pt@Fe1.7 PNPs exhibit an excellent mass activity of 7.6 A mgPt-1 for GOR, 4.75-fold higher than that of commercial Pt black in an alkaline medium. Moreover, the h-PtBi/f-Pt@Fe1.7 PNPs achieve higher power density (125.8 mW cm-2) than commercial Pt/C (81.8 mW cm-2) in a single DGFC. The h-PtBi/f-Pt@Fe1.7 PNPs can also effectively catalyze the electrochemical oxidation of 1-propanol (17.1 A mgPt-1), 1,2-propanediol (7.2 A mgPt-1), and 1,3-propanediol (5.2 A mgPt-1). The in-situ Fourier-transform infrared spectra further reveal that the CC bond of glycerol, 1-propanol, 1,2-propanediol, and 1,3-propanediol was dissociated for the complete oxidation by the h-PtBi/f-Pt@Fe1.7 PNPs. This study provides a new class of porous Pt-based heterostructure nanoplates and insight into the intrinsic activity of different C3 alcohols.

8.
Adv Mater ; : e2408285, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246151

RESUMEN

A breakthrough in manufacturing procedures often enables people to obtain the desired functional materials. For the field of energy conversion, designing and constructing catalysts with high cost-effectiveness is urgently needed for commercial requirements. Herein, the molten salt-assisted synthesis (MSAS) strategy is emphasized, which combines the advantages of traditional solid and liquid phase synthesis of catalysts. It not only provides sufficient kinetic accessibility, but effectively controls the size, morphology, and crystal plane features of the product, thus possessing promising application prospects. Specifically, the selection and role of the molten salt system, as well as the mechanism of molten salt assistance are analyzed in depth. Then, the creation of the catalyst by the MSAS and the electrochemical energy conversion related application are introduced in detail. Finally, the key problems and countermeasures faced in breakthroughs are discussed and look forward to the future. Undoubtedly, this systematical review and insights here will promote the comprehensive understanding of the MSAS and further stimulate the generation of new and high efficiency catalysts.

9.
Small ; : e2405946, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246162

RESUMEN

Under large current densities, the excessive hydroxide ion (OH) consumption hampers alkaline water splitting involving the oxygen evolution reaction (OER). High OH concentration (≈30 wt.%) is often used to enhance the catalytic activity of OER, but it also leads to higher corrosion in practical systems. To achieve higher catalytic activity in low OH concentration, catalysts on magnetic frame (CMF) are built to utilize the local magnetic convection induced from the host frame's magnetic field distributions. This way, a higher reaction rate can be achieved in relatively lower OH concentrations. A CMF model system with catalytically active CoFeOx nanograins grown on the magnetic Ni foam is demonstrated. The OER current of CoFeOx@NF receives ≈90% enhancement under 400 mT (900 mA cm-2 at 1.65 V) compared to that in zero field, and exhibits remarkable durability over 120 h. As a demonstration, the water-splitting performance sees a maximum 45% magnetic enhancement under 400 mT in 1 m KOH (700 mA cm-2 at 2.4 V), equivalent to the concentration enhancement of the same electrode in a more corrosive 2 m KOH electrolyte. Therefore, the catalyst-on-magnetic-frame strategy can make efficient use of the catalysts and achieve higher catalytic activity in low OH concentration by harvesting local magnetic convection.

10.
Small Methods ; : e2401109, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248699

RESUMEN

The quest for heightened energy efficiency is inextricably linked to advancements in energy storage and conversion technologies, wherein multifunctional catalysts play a pivotal role by mitigating the slow kinetics endemic to many catalytic reactions. The intricate synthesis and bespoke design of such catalysts, however, present notable challenges. Addressing this, the present study capitalizes on a novel dissolution manufacturing strategy to engineer self-supporting, nanoporous multifunctional electrocatalysts, circumventing the prevalent issue of customizing catalytic functionalities upon demand. This innovative approach grants the flexibility to finely tune the incorporation of active species and metalloid binders, culminating in the creation of a self-supporting nanoporous metal glass electrocatalyst doped with RuO2 (NPMG@RuO2) with outstanding performance in alkaline media. The catalyst showcases superior electrocatalytic activity, achieving low overpotentials of 41.50 mV for the Hydrogen Evolution Reaction and 226.0 mV for Oxygen Evolution Reaction alongside sustained stability over 620 hours.These achievements are attributed to the distinct nanoporous architecture that ensures a high density of catalytic sites and mechanical strength, bolstered by the synergistic interplay between RuO2 and Pt-based metallic glass. The findings provide a versatile template for the development of nanoporous multifunctional catalysts, signifying a leap forward in the realm of energy conversion technologies.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39249616

RESUMEN

The urgent need to address energy security risks and global warming has led to exploration of renewable energy sources. One such avenue is biodiesel specifically focusing on the potential of Rhodotorula minuta, a type of yeast known for producing lipids that can be used as a sustainable alternative for production of biodiesel. In the current study, this promising yeast was evaluated for its potential to produce lipids. The morphological characterization was carried out by scanning electron microscope (SEM), and intracellular detail was studied by transmission electron microscope (TEM). Changes in content and cellular biomass were monitored at time intervals with the highest biomass yield of 12.4 g/l and lipid content of 6.2 g/l achieved after 72 h. In the present work, magnesium oxide nanoparticles (MgO NPs) were synthesized and extensively characterized through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), SEM, TEM, and X-ray diffraction (XRD). By employing response surface methodology (RSM) with Box-Behnken design (BBD), optimal process conditions for transesterification could be determined. The best result achieved was a yield of 88.6% when the conditions were optimized, using methanol to oil ratio of 18:1 and 8% (w/w) amount of catalyst maintaining a reaction temperature of 55 °C and allowing the reaction to proceed for 120 min.

12.
Small ; : e2405740, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240005

RESUMEN

Utilizing Diesel Oxidation Catalysts (DOC) to partially oxidize NO to NO2 is a crucial step in controlling NOx emissions from diesel engines. However, enhancing both catalytic activity and hydrothermal stability remains a significant challenge. Benefiting from abundant asymmetric oxygen vacancies and increased Mn4+ content, MnRE0.5Zr0.5 exhibits superior NO oxidation performance (T63 = 337 °C) and hydrothermal aging resistance (T52 = 340 °C) compared to the undoped sample (T53 = 365 °C). XPS, Raman, TPR, and XAS are employed to verify the elevation of oxygen vacancy concentration and Mn valence state modulation due to Zr introduction. Furthermore, compared to MnRE (1.36 eV), the formation energy of oxygen vacancies in MnRE0.5Zr0.5 is significantly reduced (0.17 eV). This work elucidates the dual regulatory role of Zr in the Mn-RE-Zr ternary system, providing theoretical support and guidance for the design of catalysts for atmospheric pollutant purification and industrial catalysis.

13.
Chem Asian J ; : e202400802, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240103

RESUMEN

The technology of CO selective catalytic reduction of NOx (CO-SCR) showcases the potential to simultaneously eliminate CO and NOx from industrial flue gas and automobile exhaust, making it a promising denitrification method. The development of cost-effective catalysts is crucial for the widespread implementation of this technology. Transition metal catalysts are more economically viable than noble metal catalysts. Among these, Fe emerges as a prominent choice due to its abundant availability and cost-effectiveness, exhibiting excellent catalytic performance at moderate reaction temperatures. However, a significant challenge lies in achieving high catalytic activity at low temperatures, particularly in the presence of O2, SO2, and H2O, which are prevalent in specific industrial flue gas streams. This review examines the use of Fe-based catalysts in the CO-SCR reaction and elucidates their catalytic mechanism. Furthermore, it also discusses various strategies devised to enhance low-temperature conversion, taking into account factors such as crystal phase, valence states, and oxygen vacancies. Subsequently, the review outlines the challenges encountered by Fe-based catalysts and offers recommendations to improve their catalytic efficiency for use in low-temperature and oxygen-rich environments.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39240476

RESUMEN

This paper presented a kinetic model of the Langmuir-Hinshelwood-Hougen-Watson (LHHW) type for porous catalysts with simple one-dimensional geometry, including spheres, infinite cylinders, and flat pellets. The model was applied to systems involving immobilized enzymes, where enzymes are attached to porous support materials to enhance stability and reusability. The LHHW model provided a tool for understanding and modeling reaction kinetics in heterogeneous porous catalysts and immobilized enzymes. A nonlinear reaction-diffusion equation was generated using finite-range Fickian diffusion and nonlinear reaction kinetics, crucial for accurately modeling the behavior of immobilized enzymes. This research addressed a gap in the existing literature by introducing fractional derivatives to investigate enzyme reaction kinetics, capturing the complex dynamics of substrate interaction and reaction rates within the porous matrix. An approximation method based on Lucas wavelets was employed to find solutions for substrate concentration and effectiveness factors across various parameter values. The analytical solutions derived from the Lucas wavelet method (LWM) were evaluated against the fourth-order Runge-Kutta method, showing great agreement between the LWM solutions and numerical counterparts. These results optimized diffusion and reaction kinetics, paving the way for advancements in biocatalysis and efficient enzyme reactor design.

15.
Angew Chem Int Ed Engl ; : e202412245, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226232

RESUMEN

Single atom catalysts (SACs) are promising non-precious catalysts for oxygen reduction reaction (ORR). Unfortunately, the ORR SACs usually suffer from unsatisfactory activity and in particular poor stability. Herein, we report atomically dispersed manganese (Mn) embedded on nitrogen and sulfur co-doped graphene as an efficient and robust electrocatalyst for ORR in alkaline electrolyte, realizing a half-wave potential (E1/2) of 0.883 V vs. reversible hydrogen electrode (RHE) with negligible activity degradation after 40,000 cyclic voltammetry (CV) cycles in 0.1 M KOH. Introducing sulfur (S) to form Mn-S coordination changes the spin state of single Mn atom from high-spin to low-spin, which effectively optimizes the oxygen intermediates adsorption over the single Mn atomic sites and thus greatly improves the ORR activity.

16.
Water Res ; 266: 122425, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265214

RESUMEN

Recently, great efforts have been made to advance the pilot-scale and engineering-scale applications of Fenton-like processes using various nano-metal catalysts (including nanosized metal-based catalysts, smaller nanocluster catalysts, and single-atom catalysts, etc.). This step is essential to facilitate the practical applications of advanced oxidation processes (AOPs) for these highly active nano-metal catalysts. Before large-scale implementation, these nano-metal catalysts must be converted into the effective catalyst modules (such as catalytic membranes, fluidized beds, or polypropylene sphere suspension systems), as it is not feasible to use suspended powder catalysts for large-scale treatment. Therefore, the pilot-scale and engineering applications of nano-metal catalysts in Fenton-like systems in recent years is exciting. In addition, the combination of life cycle assessment (LCA) and techno-economic analysis (TEA) can provide a useful support tool for engineering scale Fenton-like applications. This paper summarizes the designs and fabrications of various advanced modules based on nano-metal catalysts, analyzes the advantages and disadvantages of these catalytic modules, and further discusses their Fenton-like pilot scale or engineering applications. Concepts of future Fenton-like engineering applications of nano-metal catalysts were also discussed. In addition, current challenges and future expectations in pilot-scale or engineering applications are assessed in conjunction with LCA and TEA. These challenges require further technological advances to enable larger scale engineering applications in the future. The aim of these efforts is to increase the potential of nanoscale AOPs for practical wastewater treatment.

17.
Angew Chem Int Ed Engl ; : e202414314, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264257

RESUMEN

Exploring NO reduction reaction (NORR) electrocatalysts with high activity and selectivity toward NH3 is essential for both NO removal and NH3 synthesis. Due to their superior electrocatalytic activities, single-atom alloy (SAA) catalysts have attracted considerable attention. However, the exploration of SAAs is hindered by a lack of fast yet reliable prediction of catalytic performance. To address this problem, we comprehensively screened a series of transition-metal atom doped Ag-based SAAs. This screening process involves regression machine learning (ML) algorithms and a compressed-sensing data-analytics approach parameterized with density-functional inputs. The results demonstrate that Cu/Ag and Zn/Ag can efficiently activate and hydrogenate NO with small Φmax(η), a grand-canonical adaptation of the Gmax(η) descriptor, and exhibit higher affinity to NO over H adatoms to suppress the competing hydrogen evolution reaction. The NH3 selectivity is mainly determined by the s orbitals of the doped single-atom near the Fermi level. The catalytic activity of SAAs is highly correlated with the local environment of the active site. We further quantified the relationship between the intrinsic features of these active sites and Φmax(η). Our work clarifies the mechanism of NORR to NH3 and offers a design principle to guide the screen of highly active SAA catalysts.

18.
Adv Sci (Weinh) ; : e2405926, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264302

RESUMEN

Herein, the study reports the first electrochemical nickel-catalyzed enantioselective hydro-arylation/alkenylation of enones in an undivided cell with low-cost electrodes in the absence of external reductants and supporting electrolytes. Aryl bromides/iodides/triflates or alkenyl bromides are employed as electrophiles for the efficient preparation of more than 56 valuable ß-arylated/alkenylated ketones in a simple manner (up to 97% yield, 97% ee). With the advantages of electrochemistry, excellent functional group tolerance and late-stage modification of complex natural products and pharmaceuticals made the established protocol greener and more economic. Mechanism investigation suggests that a NiI/NiIII cycle may be involved in this electro-reductive reaction rather than metal reductant driven Ni0/NiII cycle. Overall, the efficient electrochemical activation and turnover of the nickel catalyst avoid the drawbacks posed by the employment of stoichiometric amount of sensitive metal powder reductants.

19.
Sci Total Environ ; 953: 176127, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270859

RESUMEN

Spent hydrogenation catalysts (HDCs) contain many Mo, V, Co, Ni, and Al2O3 carriers, which are valuable secondary resources. However, improper disposal can also lead to environmental pollution risks. In the past decade, research reviews on the recovery of valuable metals from spent HDCs have been somewhat reported, mainly summarizing basic technical processes. Based on previous work, this article reviews the emerging recycling technologies of spent HDCs in recent years. The research trend of furnace optimization in the pyrometallurgical process was innovatively proposed, and the importance of developing new mild leaching agents for the high-quality recycling of Al2O3 carriers in the hydrometallurgical process was clarified.

20.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273523

RESUMEN

Amoxicillin (AMX) is utilized in the treatment of several infectious diseases, and its concentration in wastewater has increased quite significantly over the years, posing high health hazards for humans and other living organisms. Investigations are in progress globally to eliminate AMX and other related pollutants using several methods that include adsorption, photolysis, photocatalytic degradation, photoelectrocatalytic degradation, and electrochemical conversion. AMX can be eliminated efficiently from the environment using photodegradation, either by photolysis or a photocatalytic process. Several types of semiconductor NMs have been used to eliminate AMX and other related drugs present in wastewater. This review spans the photodegradation studies conducted during the years 2018-2024 to degrade and eliminate AMX in aquatic systems. Several studies have been reported to eliminate AMX from different water streams. These studies are categorized into TiO2-containing and non-TiO2-based catalysts for better comparison. A section on photolysis is also included, showing the use of UV alone or with H2O2 or PS without using any nanomaterial. A tabulated summary of both types of catalysts showing the catalysts, reaction conditions, and degradation efficiency is presented. Researchers have used a variety of reaction conditions that include radiation types (UV, solar, and visible), pH of the solution, concentration of AMX, number of nanomaterials, presence of other additives and activators such as H2O2 as oxidant, and the influence of different salts like NaCl and CaCl2 on the photodegradation efficiency. TiO2 was the best nanomaterial found that achieved the highest degradation of AMX in ultraviolet irradiation. TiO2 doped with other nanomaterials showed very good performance under visible light. WO3 was also used by several investigators and found quite effective for AMX degradation. Other metal oxides used for AMX elimination were derived from molybdenum, zinc, manganese, copper, cerium, silver, etc. Some researchers have used UV and/or visible irradiation or sunlight, without using solid catalysts, in the presence of oxidants such as H2O2. A summarized description of earlier published reviews is also presented.


Asunto(s)
Amoxicilina , Fotólisis , Contaminantes Químicos del Agua , Amoxicilina/química , Contaminantes Químicos del Agua/química , Catálisis , Peróxido de Hidrógeno/química , Aguas Residuales/química , Rayos Ultravioleta , Titanio/química , Purificación del Agua/métodos , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA