Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 8(12): e12221, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36582730

RESUMEN

Changes in blood volume can be caused by different conditions, such as vomiting, diarrhea, alteration of sodium intake, trauma, or the use of diuretics, which can lead to severe health deterioration. Understanding the mechanisms involved in the maintenance of physiological parameters and the hydroelectrolytic balance of the human body during hypovolemia, can help with preventing and handling these high-risk situations. Hence, this study investigated cardiorespiratory [mean arterial pressure (MAP), heart rate (HR), pulmonary ventilation (VE)] and blood parameters, of sodium depleted rats with furosemide and the roles of the central and peripheral renin-angiotensin and the peripheral vasopressinergic systems in controlling blood pressure in these animals. Different groups under the same conditions received subcutaneous (s.c.) injections of furosemide (diuretic/saliuretic) or vehicle, intracerebroventricular (i.c.v.) or intravenous (i.v.) injections of losartan [angiotensin II (ANG II) AT1 receptor antagonist] or saline, and i.v. injections of Manning compound (AVPX, vasopressin V1 receptor antagonist). Sodium depletion increased the VE (708 ± 71, vs. normovolemic: 478 ± 40 mL/min/kg body wt) and did not modify baseline mean arterial pressure (104 ± 4, vs. normovolemic: 105 ± 4 mmHg) and heart rate (334 ± 20, vs. normovolemic: 379 ± 13 bpm). The i.v. losartan (10 mg/kg of body wt) treatment significantly reduced MAP in all groups and elevated HR, with a greater impact in sodium depleted rats before repletion. On the other hand, the i.c.v. losartan (3.3 µg/kg of body wt) and i.v. AVPX (10 µg/kg of body wt) treatments did not alter the MAP and HR in control, sodium depleted, and sodium repleted rats. These results indicate that sodium depletion affects cardiorespiratory control increasing baseline ventilation and peripheral angiotensinergic mechanisms are relevant for maintaining cardiovascular parameters in sodium depleted rats. Besides, this study suggests vasopressin V1 receptors do not participate in the maintenance of MAP and HR in sodium depleted animals with furosemide.

2.
Biol Res ; 51(1): 57, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30572940

RESUMEN

BACKGROUND: chronic hypoxia increases basal ventilation and pulmonary vascular resistance, with variable changes in arterial blood pressure and heart rate, but it's impact on heart rate variability and autonomic regulation have been less well examined. We studied changes in arterial blood pressure, heart rate and heart rate variability (HRV) in rabbits subjected to chronic normobaric hypoxia (CNH; PB ~ 719 mmHg; FIO2 ~ 9.2%) for 14 days and assess the effect of autonomic control by acute bilateral vagal denervation. RESULTS: exposure to CNH stalled animal weight gain and increased the hematocrit, without affecting heart rate or arterial blood pressure. Nevertheless, Poincaré plots of the electrocardiographic R-R intervals showed a reduced distribution parallel to the line of identity, which interpreted as reduced long-term HRV. In the frequency domain, CNH reduced the very-low- (< 0.2 Hz) and high-frequency components (> 0.8 Hz) of the R-R spectrograms and produced a prominent component in the low-frequency component (0.2-0.5 Hz) of the power spectrum. In control and CNH exposed rabbits, bilateral vagotomy had no apparent effect on the short- and long-term HRV in the Poincaré plots. However, bilateral vagotomy differentially affected higher-frequency components (> 0.8 Hz); reducing it in control animals without modifying it in CNH-exposed rabbits. CONCLUSIONS: These results suggest that CNH exposure shifts the autonomic balance of heart rate towards a sympathetic predominance without modifying resting heart rate or arterial blood pressure.


Asunto(s)
Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Hipoxia/fisiopatología , Vagotomía , Animales , Glucemia/fisiología , Peso Corporal/fisiología , Enfermedad Crónica , Modelos Animales de Enfermedad , Hematócrito , Masculino , Conejos
3.
Biol. Res ; 51: 57, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1011401

RESUMEN

BACKGROUND: chronic hypoxia increases basal ventilation and pulmonary vascular resistance, with variable changes in arterial blood pressure and heart rate, but it's impact on heart rate variability and autonomic regulation have been less well examined. We studied changes in arterial blood pressure, heart rate and heart rate variability (HRV) in rabbits subjected to chronic normobaric hypoxia (CNH; PB ~ 719 mmHg; FIO2 ~ 9.2%) for 14 days and assess the effect of autonomic control by acute bilateral vagal denervation. RESULTS: exposure to CNH stalled animal weight gain and increased the hematocrit, without affecting heart rate or arterial blood pressure. Nevertheless, Poincaré plots of the electrocardiographic R-R intervals showed a reduced distribution parallel to the line of identity, which interpreted as reduced long-term HRV. In the frequency domain, CNH reduced the very-low- (< 0.2 Hz) and high-frequency components (> 0.8 Hz) of the R-R spectrograms and produced a prominent component in the low-frequency component (0.2-0.5 Hz) of the power spectrum. In control and CNH exposed rabbits, bilateral vagotomy had no apparent effect on the short- and long-term HRV in the Poincaré plots. However, bilateral vagotomy differentially affected higher-frequency components (> 0.8 Hz); reducing it in control animals without modifying it in CNH-exposed rabbits. CONCLUSIONS: These results suggest that CNH exposure shifts the autonomic balance of heart rate towards a sympathetic predominance without modifying resting heart rate or arterial blood pressure.


Asunto(s)
Animales , Masculino , Conejos , Vagotomía , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Hipoxia/fisiopatología , Glucemia/fisiología , Peso Corporal/fisiología , Enfermedad Crónica , Modelos Animales de Enfermedad , Hematócrito
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA